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• Autonomy and Artificial Intelligence (AI)
• Assurance challenges and (some) new approaches

• Current approaches to safety and SOTIF
• Complex and open environment
• Human-AV interaction
• Complex system and AI lifecycles 
• Assurance case 

• Regulation 
• Related work 
• Conclusions and discussion 

Key Topics



Autonomy

• The Oxford English Dictionary says that autonomy is
• The ability of a person to make his or her own 

decisions (or self-government, independence …)
 Autonomous systems make decisions, not humans

• Electric kettles that switch themselves off
• Adaptive gearboxes in cars
• Vacuum cleaners …

• Autonomous not automatic
• Open world, complexity of decisions,

uncertainty, …

Concept 



Autonomy and AI

• Autonomous systems do not need to use AI
• But many do, especially Machine Learning (ML)

• ML means
• Getting computers to learn from data in the form of 

observations and real-world interactions in order to 
create a model of the real-world

• ML implements decisions moved from human to 
machine

• Machine only does what its been trained to do (model)
• No ‘general intelligence’ brought to bear (not in model)

AI, Machine Learning and Assurance



Example HAV Function
Lane Keeping



Challenges of Autonomy
Safety Processes



Current Approaches

• ISO 26262 was developed by the industry
• Derived from IEC 61508 
• Documenting ‘accepted good practice’ – drawing on 

other domains in some cases

• Some deliberate ‘omissions’ now being addressed
• ISO 26262 only considers effect of ‘failures’

• Doesn’t address HAVs or FAVs
• Safety of Intended Function (SOTIF) in ISO PAS 21448

• Considering is function, e.g. lane keeping, safe ‘in itself’?
• Step towards dealing with autonomy (mainly HAVs)

ISO 26262 and SOTIF



Arguing Safety

• Argument supported by evidence 

ISO 26262 and SOTIF Assurance Case

G-Dev2.1.3: The 
specification is sufficiently 
free from insufficiencies

E2.1.3.1: 
ODD analysis

G-Dev2.1.3.1: ODD is 
sufficiently well understood

G-Dev2.1.3.2: The scenarios in 
which the specified behaviour 

is potentially hazardous are 
identified

E2.1.3.2b: List of 
scenarios in 
which the 
specified 

behaviour is 
potentially 
hazardous

E-Dev2.1.3.2.a 
Safety analysis 

of specified 
behaviour on 
vehicle level

Context: 
- Definition of hazardous conditions (E1b)
- ODD

CLAIM

SUB-CLAIM CONTEXT

SOLUTIO
N



Why is Assurance Hard?

• Can we test to gain assurance?
• Currently ~ 3.7 million miles between fatalities with 

drivers in developed nations (statistics vary)
• Even the best current AVs (Waymo) “disconnect” about 

every 16,500 miles (worst around 1 mile)
• Have we covered all credible operational scenarios?
• On road-testing can never be enough

• Must using testing and simulation
• Combined coverage of operational scenarios
• Arguments needed to justify ‘sufficiency’

Complexity of the Environment 



Why is Assurance Hard?
Open World



New Approach

• Open world
• Unconstrained, uncertain, 

hard to assure

• Closed world
• Bounded, (fairly) certain, 

relatively easy to assure

• Defined world
• Constrain open world to

bound uncertainty – operational 
design domain (ODD)

Constraining Behaviour 



New Approach

• Within ODD performs safely
• Detects excursion from ODD

• In advance?
• NB weather …

• Behaves safely on
excursion from ODD

Exploiting the ODD

OPERATIONAL 
DESIGN DOMAIN 

(ODD)SYSTEM IS 
SAFE FOR HAV 

(SAE L4)

SYSTEM IS SAFE 
IN ODD

RULES OF THE 
ROAD

SYSTEM DETECTS 
ITS ODD

SYSTEM SAFELY 
REACHES 

MINIMUM RISK 
CONDITION

Not independent



New Approach
Specify ODD and Associated Rules

Approach being developed by FiveAI



Why is Assurance Hard?

• How do autonomous and human operated systems 
“understand” each other

• Including intentions?
• How do we manage “hand over”?
• What is it realistic to expect of drivers?

Human System Interaction



Why is Assurance Hard?
Situational Awareness



Assurance and Humans

• Arguments and evidence need to address
• Ability of driver to maintain concentration in monitoring 

mode
• The length of time for the driver to regain situational 

awareness after disengaging from driving task
• Ability of the system to alert the driver effectively
• Social cognition (and disruption from autonomy)

• Many believe SAE L3 automation problematic
• Easier to do SAE L4 HAV or FAV – but this shifts the 

problem of assurance to the ML components 

Human System Interaction



System Complexity

• Ability to learn and generalize beyond training data
• By making sense of unstructured data, machine learning 

is particularly suited to open context systems
• Deep learning enabled computers to learn tasks that 

seemed to be intractable for computer programs before
But learnt models very complex (100s of dimensions)

The Appeal of Machine Learning

Source: www.cityscapes-dataset.com



Why is Assurance Hard?

• Inherently uncertain (“80% sure, it is a vehicle”)
• And uncertainty propagates

• Learnt models are high-dimensional, in general not 
understandable by humans

• Models are ‘black box’ and what is learnt is hard to 
explain 

• No structured verification methods for learnt 
functions and currently no commonly agreed 
means to argue their safety

Complexity and Uncertainty



Current Approaches
ISO 26262 Lifecycle Model(s)

Terminology 1- 19



New Approach

 If

ML Lifecyle Model
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New Approach

• Core of assurance case remains the same as non-AV 
or non-ML case

• Confidence argument
addresses uncertainties

• Example is the ML (model
learnt) confidence claim
and associated argument

• Currently experimenting
with this approach in ISO 
26262 context

Assurance Argument and Evidence



Regulation

• To define a performance requirement for (AI in) AVs 
such that

1. AI never engages in careless, dangerous or reckless 
driving behaviour (argue about SOTIF)
2. AI remains aware, willing and able to avoid collisions at 
all times (safety process and confidence arguments)
3. AI meets, or exceeds, the performance of a competent & 
careful human driver (requirements validation)

• Approach to analysis of ML and assurance cases 
gives a basis for doing this (especially 1 and 2)

• Can be enshrined in regulations

UN ECE Objectives



Related Work

• UL 4600 led by Phil Koopman
• Assurance case approach, but very detailed

• BSI activities on AVs funded by the Centre for 
Connected Autonomous Vehicles (CCAV)

• Various PAS and I chair the Advisory Board
• ISO 26262 work on SOTIF Assurance Arguments

• Using York’s Goal Structuring Notation (GSN) 
• CCAV intend to develop a safety process for AVs
• Industry activities, e.g. FiveAI (I’m an advisor)

A (Very) Selective Sample



Demonstrator Projects



Programme Fellows



Conclusions

• Need to be aware of other relevant activities and 
build on or complement them

• I identified several, but there is much more work on 
standards internationally to consider

• Programme working across domains
• But several activities focused on AVs
• Believe ML lifecycle and approach to assurance unique

• Regulation is a major focus for the Programme
• Happy to work with the WG and to assess the extent to 

which the Programme’s approach can support the WG

Suggestions to the WG



Discussion
Over to you
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