Bristol Smart Internet Lab's Future Networks 2030 Vision

Smart Internet Lab @ University of Bristol: Global Leaders at Future Network Research and Innovation

Presented on the 13th of January 2020, To ITU NET 2030 Workshop in Lisbon/PT, By Xavier Priem, Senior Research Fellow @Smart Internet Lab

bristol.ac.uk/smart

Smart Internet Lab, Led by: Prof. FREng.Who are we?Dimitra Simeonidou

- A unique interdisciplinary future networks & connectivity research hub with 200 academics and researchers, and growing...
- Founded by three research groups
 - Communication Systems & Networks <u>https://www.bristol.ac.uk/engineering/research/csn/</u>
 - High Performance Networks
 <u>https://www.bristol.ac.uk/engineering/research/csn/</u>
 - Photonics and Quantum
 <u>http://www.bristol.ac.uk/engineering/research/pho/</u>
- Combined expertise across optical, quantum, wireless, IoT and cloud technologies (central DC and MEC).
- Extensive expertise on hardware, software, cross-layer optimization and co-design
- Real world deployments and large-scale experimentations <u>http://www.bristol.ac.uk/engineering/research/smart/</u>

Networking Research Themes:

- Enabling Technologies
- End-to-end Network Convergence
- AI/ML for Digital Infrastructures
- End-to-end Network Automation
- Autonomous Systems and Networks
- Advanced QKD Networking
- Connectivity as a Shared Critical Utility (technical and business)
- 5G and Beyond

Application and Vertical Sectors:

- Smart city/region
- Connected transport and Transport Logistics
- Assisted Living
- Smart tourism
- Digital Culture/Media
- Music and Sports
- Public safety/Crowd Control
- High Value Manufacturing

Smart's Future Networks 2030 (r)Evolution Vision: 12 foundation pillars / paving stones on the path

Smart Internet Lab

Architecture principles and some samples of the work we do to enable and ground our Future Networks Vision...

Pervasiveness (everywhere, all services, all industries/vertica s support)

Multi-layered

multitenancy,

full neutral

hosting, 6D

sliceable

Dimension / **D**omain

(with D intersections)

Optical spectrum

2 - Wireless EM spectrum - 2

Time

Horizontal Space

Vertical Space

End-to-end

- 1

- 5

X

6D Sliceable Space for Shareability & Multitenancy with finest viable granularity (technically and economically $\frac{1}{2}$

Research **A**xes

(incremental or radical)

Sliceable Optics, shared lambdas, ...

Horizontal & Vertical Flexible Sharing

but with high precision synchronisation

AI based. Cognitive. Collaborative

GEOSAT, LEO/MEO, HAPS

E2E NS^{^n}aaS Multilayer

Orchestration,

Remove Cells => Radio Connectivity Ocean

Sp-RAN, Sp&D-Core, Sp&D-EC, Sp&D-BH

CBRS, DSS, LSA, LAA, MultiFire...

 \succ to enable pervasiveness and multitenancy business dynamicity

bristol.ac.uk/smart

6 -

Architecture Principles

- Disaggregated and composable network infrastructure
- Self-driving network infrastructure
- Technology enablers & challenges
 - Deep network programmability
 - Deep network virtualization
 - Data plane as a micro service
 - ML assisted automation
 - Composable Monitoring and data analytics

- To allow any service to mix-and-match and use compute, storage and network resources upon request (on-the-fly)
- To support high scale: on demand levels (services, users); devices (IoT, bodynets, etc.); points and types of technologies of access
 - Distributed/decentralised solution focusing at the edge where requests arrive (access, service, etc.)
 - Targeted, customised solutions tailored for local network conditions and dynamics (temporal and space locality)
- Enable high network dynamics: variable amounts and types of traffic; devices (IoT, etc.); on-the-fly dynamic service (re)composition

Self-Driving Network, Self-Composability

Virtual Network Service

- Machine Learning Assisted and Deep Learning Network Service and Function Composition and Operation
- Function Service Profiling & Monitoring
- Infrastructure Abstraction
- Function Placement
- Methods

Deeper

disaggregation

(of SW and HW

functions)

- Game Theory
- Neural Network
- Adaptive Regression

- Programmable Hardware & Network HW Function Virtualization
 - Low latency, high-speed and highly synchronous
 - Function in HW on demand
 - Providing enhanced edge functionality

- Securing communication between VNFs
- Securing Migration of VNFs

Multi-layered multitenancy, full neutral hosting, 6D sliceable Functionality

• Multi-access control

- Manage KPI trade-offs (latency, throughput, location accuracy, density...)
- Traffic management
 - Address local traffic dynamics and network load
 - Address network and computational dynamics
- Key challenges intelligence at the edge:
 - Data path interfaces
 - Fast reconfiguration
 - Sharing and isolation
 - Synchronization
 - Resilience, security
 - Efficiency, scalability & sustainability

Smart Internet Lab

QKD Integration in 5G and beyond 5G

- Developed the physical layer technologies to integrate QKD with OTN infrastructure:
 - Co-existence of classical/quantum

Scalability,

Resiliency and Security

- Dynamic QKD for the Edge/Metro [ECOC 2019 PDP]
- Extended OSM MANO to incorporate QKDawareness:
 - Provision of QKD as an additional security service
 - Use QKD to securely chain VNF through OTN across multiple domains
 [OFC 2019 PDP]
- 3 Enable Quantum/Classical end-to-end security:
 - Develop Hybrid Key Exchange and Management system
 - Managing Post-Quantum Cryptography for Wireless/Optical BH
 - [QKD over 5GUK demo

https://www.bristol.ac.uk/physics/research/quantum/conferences/qkdover5guk/]

- Complete the "Dynamic QKD Networking"
 - 2nd Logical Step in QKD networking: Multiple Quantum Channels in the same link
 - Full Q-ROADM: multiple-Q/multiple Cl- channels
- Apply QKD in 5G Fronthaul solutions
 - Employ SFP-class cost-efficient of QKD sources for end users
 - Cover the last mile for true end-to-end QKD encryption

- Entanglement-based Quantum Networks
 - Employ entangled sources to distribute quantum states in multiple nodes
 - Use the "WDM" feature of entangled photons

Conclusion

- The first pillar, Pervasiveness, is essential in the future to support Verticals and a true Digital enabled Society (no divide)
- The cost of pervasiveness will be balanced by new business models enabled by Multi-layered multitenancy and shareability capabilities
- Deeper disaggregation, programmability, "edge-ification" are strong necessary enablers for pervasiveness
- Dynamic Scalability, Resiliency and Security will support predictable, trustable and thus guarantied SLAs for verticals
- Future Networks must become the 4th Utility Critical Connectivity Grid Infrastructure and be globally designed as such

THANK YOU

Contact: Xavier Priem,

xavier.priem@Bristol.ac.uk +44 (0) 7985371024

Thanks for the contributions from:

- Prof Dimitra Simeonidou
- Prof Reza Nejabati
- My colleagues Researchers from the HPN Research Group