

Q13: Introduction

3

- Network synchronization and time distribution performance
 - Networks Timing Needs (e.g., OTN)
 - End Applications Timing Needs (e.g. 5G Base Stations)
- Distribution of *Time-Phase* and *Frequency*
 - Methods (e.g., over physical layer, via packets, GNSS)
 - Architectures
 - Clocks
 - PTP profiles
 - Performance, Redundancy, Reliability, etc.
 - Networks
 - From SDH to Ethernet, IP-MPLS, OTN, xPON, ... -> MTN
- Recommendations
 - G.826x series (distribution of frequency synchronziation)
 - G.827x series (Distribution fo time synchronzation)
 - G.781, G.781.1 (Sync Layer Functions)
 - «Historical» (G.803, G.810, G.811, G.812, G.813, G.823, G.824, G.825...)

Target Requirements: Absolute vs. Relative Time Error

Target Applications (Time sync), G.8271

Level of accuracy	Time error requirements (Note 1)	Typical applications (for information)	
1	500 ms	Billing, alarms	
2	100 μs	IP Delay monitoring	
3	5 μs	LTE TDD (large cell) Synchronous Dual Connectivity (for up to 7 km propagation difference between eNBs/gNBs in FR1) (Note 2)	
4	1.5 μs	UTRA-TDD, LTE-TDD (small cell), NR TDD, WiMAX-TDD (some configurations) Synchronous Dual Connectivity (for up to 9 km propagation difference between eNBs/gNBs in FR1) (Note 2) NR Intra-band non-contiguous and Interband carrier aggregation, with or without MIMO or transmit (TX) diversity.	
5	1 μs	WiMAX-TDD (some configurations)	
6 0-01-24 Page 4	x ns (Note 4)	Various applications, including location based services and some coordination features (Note 3)	

Generally Relative Time Error

Target Applications: Fronthaul

2020-01-24 | Page 5

DU: Distributed Unit; RU: Radio Unit

Ongoing Studies: Clocks (G.8273.2)

T-BC/T-TSC Class	Maximum absolute time error — max TE (ns)
Α	100 ns
В	70 ns
С	30 ns
D	For further study
T-BC/T-TSC Class	Maximum absolute time error — max TE _L (ns)
D	5 ns

Constant Time Error (cTE)

T-BC/T-TSC Class	Permissible range of	
	constant time	
	error - cTE(ns)	
Α	±50	
В	±20	
С	±10	
D	For further study	

Dynamic Time Error (dTE) expressed in terms of MTIE and TDEV

Noise (Time Error) Accumulation (G.8271.1)

Simplified estimation:

cTE accumulates <u>linearly</u>; dTE as <u>square root of sum of squares (RSS)</u>

$$\max \left| TE_N \right| \leq \sum_{i=1}^{N} \left| cTE_i \right| + \sum_{j=1}^{N-1} \left| linkTE_j \right| + \sqrt{\left\{ \sum_{i=1}^{N} \left[\max \left| d^LTE_i(t) \right| \right]^2 \right\} + \left[\max \left| d^HTE_N(t) \right| \right]^2}$$

• Additional noise sources: Holdover, Link Asymmetries, SyncE Rearrangements ...

cTE Accumulation: Linear vs. RSS

- cTE is generally modeled to accumulate linearly in order to provide the worst case estimation.
 - in many cases the time error in cascaded clocks may compensate and the result will be much lower;
 - Nevertheless, over a large number of deployments there can be a significant number of occasions where this will not happen:, and will not change over time...
 - not acceptable in case of critical functions (e.g. TDD)

- Another case where linear accumulation may lead to wrong conclusions is when same vendors/components are used in most of the nodes
 - Same error may be generated in each node

- *In conclusion:*
 - RSS approximation may be acceptable only for noncritical functions and over long chain of clocks (compensation may be less likely in case of short chains)
 - In all other cases linear accumulation should be generally considered

Ongoing Studies: Enhanced Synchronous Ethernet (G.8261, G.8262.1)

- Enhanced Clock support frequency sync distribution over the phyical layer (e.g. Synchronous Ethernet in case of Ethernet): G.8262.1
- Network Limits Improvements: further improvements to support fronthaul?

Ongoing Studies: Fronthaul (G.8271.1)

- Under analysis guidelines for network dimensioning
- Clock Class C from G.8273.2 is generally assumed
- Use of enhanced Synchronous Ethernet
- Initial assumptions : short clock chain (e.g., M < 3-5)

Network Performance measurement still with respect to a common master?

Some options exist ...

IEEE1588: now and future

- Methods to distribute time sync includes use of Precision Time Protocol (PTP) as specified by IEEE1588
- Use of PTP by a specific Industry requires definition of ad-hoc "Profiles":
 - G.8275.1, G.8275.1, G.8275.2 defined by ITU-T
 - Based on <u>IEEE1588-2008</u>
 - New version recently completed by IEEE1588, v2.1 (IEEE1588-2019)
- Several optional features have been added in the IEEE1588 v2.1:
 - Definition of Special PTP ports
 - Management configuration of PTP port states
 - Cumulative rate ratio
 - Options for greater security (PTP built in security option and guidelines for providing external security i.e. Macsec and IPsec)
 - Performance monitoring tools
 - TLV carrying performance network information
 - High accuracy PTP profile

Ongoing Studies: PTP Profile Interworking

In some deployment scenarios an inter-working function (IWF) may be used to translate between different segments of a network that are running different PTP profiles (G.8275)

Topic strictly related to TSN Time sync (3GPP TS 23 501) ...

G.8275-Y.1369(17)-Amd.1(18)_FIII.1

Figure from TS 23.501: 5G system is modelled as IEEE 802.1AS compliant time aware system for supporting TSN time synchronization

What is Next?

- MTN, Metro Transport Network, (reuse of FlexE for 5G Transport)
 - Sync Requirements
 - Sync Architecture
 - PTP and syncE distribution
 - Clocks
- Complete work on Profile Interworking
- Complete work on cnPRTC (Coherent PRTC)
 - Requirements
 - Methods (high accuracy profile?)
- Address New Sync Requirements
 - Emerging needs in mobile networks (Positioning or even use cases with less stringent requirements);
 - Future needs?

• The coherent network PRTC connects primary reference clocks at the highest core or regional network level. This provides the ability to maintain network-wide ePRTC time accuracy, even during periods of regional or networkwide GNSS loss (G.8275)

Ericsson.com