AI for Industrial 5G

– Challenges and Opportunities –

Dr. Andreas Mueller
Robert Bosch GmbH
AI for Industrial 5G | Challenges and Opportunities

Why 5G for Industry?

Factory of the Past

Rather static and highly optimized for one particular product

Image: Bosch

Factory of the Future

Highly flexible and support of high degree of customization
→ walls, roof and factory floor as only fixed components
→ ubiquitous wireless connectivity for plug-and-play + mobility

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
The Factory of the Future

5G will become the central nervous system of the Factory of the Future

- Edge Computing
- Wireless Connectivity
- Device Positioning
- QoS Differentiation

QoS: Quality of Service
AI for Industrial 5G | Challenges and Opportunities
Value to be Unlocked by 5G in Different Vertical Domains

Source: KPMG, "Unlocking the benefits of 5G for enterprise customers", 2019
AI for Industrial 5G | Challenges and Opportunities

Key Success Factors for 5G in Industry

- Industrial-Grade Performance
- Time-Sensitive Communication
- Costs
- Integrated Positioning
- Private 5G Factory Networks
What is a Private 5G Network?

- 3GPP inside
- A Standard-Compliant 5G Network
- Only for a Restricted Set of Users
- Local Deployment
- Using Managed / Dedicated Spectrum
Why Private 5G Networks?

Security Performance Business Independence Liability
Why AI?
Why AI for Industrial 5G?

1. Optimize performance to satisfy demanding industrial requirements
2. Simplify & automate planning & operation of private 5G networks
3. Make network data available to applications for joint optimization
4. Provide higher security on different levels

Real-time and offline optimizations possible for all aspects
AI for Industrial 5G | Challenges and Opportunities

How AI may enhance Industrial 5G

Network Planning
- Placement & dimensioning of antennas & nodes

Network Reconfiguration
- In case of changes of the environment and/or applications

Security
- Detect anomalies & jammers and react in a smart way

Network Installation
- Fine-tune initial planning based on few measurements

SON\(^1\) Features
- Self-healing, self-configuration, self-monitoring, etc.

Performance Optimization
- QoS\(^2\) prediction and proactive network mgmt

AI-Enhanced Applications
- Joint optimization of application and 5G network

\(^1\)Self-Organizing Networks \(^2\)Quality-of-Service
AI for Industrial 5G | Challenges and Opportunities

Example 1: QoS Prediction

Controller → Actuators → Process

Closed-Loop Control System

Cyclic traffic + common AGV\(^1\) routes for accurate interference / QoS\(^2\) prediction
Example 2: Potential (Transfer) Learning Opportunities

Reconfiguration of Production Lines
- Change of individual modules or part of the structure of the production line
 - Can we leverage existing knowledge?
 - How frequent may these changes occur?

Transfer of Production Lines
- Change of building architecture & material, co-located production lines & machinery, regulatory constraints, etc.
- But: Still the same production line + many similarities
 - Can we leverage existing knowledge?
Opportunities

- **Access to plenty of (high-quality) data**, including relevant context information beyond communication system
- Many **polycyclic and repetitive processes** → “easy” to be learned
- Rather **controlled environments** for optimizing the overall system beyond the communication system
- **Localized problem** → latencies, amount of data, processing power easier to deal with than in public networks
- **Data sovereignty challenge** easier to be addressed as whole system may be under control of factory owner

Challenges

- Very **complex environments** with challenging propagation conditions, diverse traffic characteristics & requirements and (still) high heterogeneity → but this may eventually also motivate the usage of AI 😊
- **Suitable interfaces** for making connectivity data available to production systems and/or vice versa still widely missing
- **Where to process the data** and who owns and can access the data, esp. if network is not operated by factory owner himself? → data-to-the-Cloud vs. AI-to-the-data (on premise)
- **How much training** is needed? → Training durations > reconfiguration cycles?
- Potential high damage in case of errors → **high confidence levels & traceability** required
AI for Industrial 5G | Challenges and Opportunities
Planned German National Research Project KICK

KICK = Artificial Intelligence for Campus Communication

Major Objectives

(1) AI-supported network management incl. suitable interfaces between production system and network management system
(2) Consideration of short and medium time scales + transfer learning
(3) Development & evaluation of hybrid approaches
(4) Validation and experimental evaluation in real-world factory environment
(5) Identification of standardization gaps

Key Facts

- Jan 2020 – Dec 2022 (expected)
- Funding body: BMBF
- Total volume: ~9.5 Mio. € (costs)