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Record Performances with DNNs

AlphaGo beats Go  
human champ

Deep Net outperforms humans  
in image classification

Deep Net beats human at 
recognizing traffic signs

DeepStack beats 
professional poker players

Computer out-plays 
humans in "doom"

Dermatologist-level classification 
of skin cancer with Deep Nets

Revolutionizing Radiology 
with Deep Learning
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Complexity of DNN is Growing
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Large Computational Resources Needed
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Large Computational Resources Needed

We need techniques to reduces the 
computational complexity

(i.e., storage, memory, energy, runtime)
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Processing at the “Edge”

On-device deep learning Privacy-preserving

Latency constraints
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Outline of this talk

1. Background
2. DeepCABAC

3. Compressed Entropy Row Format

This talk will discuss how to reduce the 
complexity of DNNs by model compression 

and efficient representation.

Outline
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Deep Neural Networks

For instance, VGG16

- 16 weight layers

- 138 000 000 parameters

- 553 MB (uncompressed)

cross-entropy
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DNN & Signal Compression

Assume B to be fix universal lossless code.

Signal compression
Distortion between elements 
(e.g. pixel values)
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DNN & Signal Compression

Signal compression
Distortion between elements 
(e.g. pixel values)

Assume B to be fix universal lossless code.

Neural network compression
Distortion between function of elements 
(e.g. prediction outputs)
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Neural Network Compression
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Neural Network Compression

Use KL-divergence as distortion 
measure
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Neural Network Compression

If the output distributions do not 
differ too much, we can 
approximate KL with the Fisher 
Information Matrix (FIM)
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Neural Network Compression

Approximate FIM by only its 
diagonal elements
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DeepCABAC

Estimated as          
(Bayesian DNN)

CABAC

DeepCABAC-v1
[Wiedemann et al. 2019, arXiv:1907.11900]
[Wiedemann et al. 2019, ODML-CDNNR] 
best paper award
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DeepCABAC

DeepCABAC-v2

CABAC

[Wiedemann et al. 2019, arXiv:1907.11900]
[Wiedemann et al. 2019, ODML-CDNNR] 
best paper award
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DeepCABAC

DeepCABAC-v3
[Wiedemann et al. 2019, arXiv:1907.11900]
[Wiedemann et al. 2019, ODML-CDNNR] 
best paper award
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Properties of CABAC

Context-Adaptive Binary Arithmetic Coder

Properties of CABAC
Binarization: represents each unique input value as a sequence of binary decisions.
Context modelling: probability model for each decision, which is updated on-the-fly by the local 
statistics of the data -> universality. 
Arithmetic coding: arithmetic coding for each bit -> minimal redundancy + high efficiency

Examples
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DeepCABAC Results
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DeepCABAC Results
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Efficient Representations

Goal: Find a representation for the weight 
matrices of a neural network, which is:
1) efficient with regard to storage
2) efficient with regard to algorithm complexity 

of the dot product operation.
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Matrix Formats

Storage requirements: 60 entries
Scalar product (second row M, vector a):
- 24 load
- 12 multiply
- 11 add 
- 1 write operations 

dense format
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Matrix Formats

Storage requirements: 62 entries
Scalar product (second row M, vector a):
- 20 load
- 6 multiply
- 5 add 
- 1 write operations 

sparse format
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Matrix Formats

Storage requirements: 49 entries
Scalar product (second row M, vector a):
- 17 load
- 1 multiply
- 5 add 
- 1 write operations 

[Wiedemann et al. 2019, IEEE TNNLS]

CER format
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Storage efficiency

[Wiedemann et al. 2019, IEEE TNNLS]
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Results

[Wiedemann et al. 2019, IEEE TNNLS]

Compressed AlexNet after converting it’s weight matrices into the different data structures.
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Questions ???

Contact Information:
Wojciech Samek
Machine Learning Group
Fraunhofer HHI
Einsteinufer 37, 10587 Berlin, Germany

Phone: +49 30 31002-417
Mail: wojciech.samek@hhi.fraunhofer.de
Web: http://iphome.hhi.de/samek

Thank you for your attention

http://iphome.hhi.de/samek

