

Compression of Deep Neural Networks

Fraunhofer HHI, Machine Learning Group Wojciech Samek

Record Performances with DNNs

AlphaGo beats Go human champ

Computer out-plays humans in "doom"

Deep Net outperforms humans in image classification

IM 🔓 GENET

Dermatologist-level classification of skin cancer with Deep Nets

Revolutionizing Radiology with Deep Learning

DeepStack beats professional poker players

Deep Net beats human at recognizing traffic signs

Complexity of DNN is Growing

Large Computational Resources Needed

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Large Computational Resources Needed

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Processing at the "Edge"

On-device deep learning

Privacy-preserving

Latency constraints

This talk will discuss how to reduce the complexity of DNNs by model compression and efficient representation.

Outline

- 1. Background
- 2. DeepCABAC
- 3. Compressed Entropy Row Format

Deep Neural Networks

DNN & Signal Compression

Assume B to be fix universal lossless code.

Signal compression Distortion between elements (e.g. pixel values)

$$\arg\min_{(Q,Q^{-1})} D(w_j,q_j) + \lambda L(b)$$

DNN & Signal Compression

Assume B to be fix universal lossless code.

Signal compression Distortion between elements (e.g. pixel values)

$$\arg\min_{(Q,Q^{-1})} D(w_j,q_j) + \lambda L(b)$$

Distortion between function of elements (e.g. prediction outputs)

$$\arg\min_{(Q,Q^{-1})} \mathcal{L}(y'',y') + \lambda L(b)$$

$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \sum_{(x, y) \in \mathbb{D}} \mathcal{L}(y'', y') + \lambda L_Q(b) \qquad y' \sim P(y'|x, w) \qquad y'' \sim P(y''|x, q)$$

$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \sum_{\substack{(x, y) \in \mathbb{D}}} \mathcal{L}(y'', y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \sum_{\substack{(x, y) \in \mathbb{D}}} D_{KL}(y''||y') + \lambda L_Q(b)$$

Use KL-divergence as distortion measure

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} \mathcal{L}(y'', y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} D_{KL}(y''||y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{min}} (q - w)F(q - w)^T + \lambda L_Q(b)$$

If the output distributions do not differ too much, we can approximate KL with the Fisher Information Matrix (FIM)

$$\mathbb{E}_{P_{\mathbb{D}}}[D_{KL}(y''||y')] = \delta w F \delta w^{T} + \mathcal{O}(\delta w^{2})$$

with $\delta w = q - w$ and

 $F := \mathbb{E}_{P_{\mathbb{D}}} \mathbb{E}_{P(y'|x,w)} [\partial_w \log P(y'|x,w) (\partial_w \log P(y'|x,w))^T]$

$$\begin{array}{c}
(Q,Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg\ min}} & \sum_{(x,y)\in\mathbb{D}} \mathcal{L}(y'',y') + \lambda L_Q(b) \\
\downarrow \\
(Q,Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg\ min}} & \sum_{(x,y)\in\mathbb{D}} D_{KL}(y''||y') + \lambda L_Q(b) \\
\downarrow \\
(Q,Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{min}} & (q-w)F(q-w)^T + \lambda L_Q(b) \\
\downarrow \\
(Q,Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg\ min}} & F_i(q_i - w_i)^2 + \lambda L_Q(b) \\
\downarrow \\
\begin{array}{c}
\mathsf{Ap}_{\mathsf{dia}}\\\mathsf{dia}
\end{array}$$

Approximate FIM by only its diagonal elements

DeepCABAC

DeepCABAC

DeepCABAC

Properties of CABAC

Properties of CABAC

Binarization: represents each unique input value as a sequence of binary decisions.

<u>Context modelling</u>: probability model for each decision, which is updated on-the-fly by the local statistics of the data -> universality.

<u>Arithmetic coding</u>: arithmetic coding for each bit -> minimal redundancy + high efficiency

Sparse Models (sparsity [%])	Org. Acc. Top1 [%]	Os size [MB]	DeepCABAC (acc. [%])
VGG16 (9.85)	69.43	553.43	1.57 (69.43)
ResNet50 (74.12)	74.09	102.23	4.74 (73.65)
Small-VGG16 (7.57)	91.35	60.01	1.6 (91.00)
LeNet5 (1.90)	99.22	1.72	0.72 (99.16)

	Sparse Models (sparsity [%])	Org. Acc. Top1 [%]	Os size [MB]	DeepCABAC (acc. [%])		
	VGG16	69.43	553.43	1.57		
VGG16 553.4MB -> 8.7MB at an acc. 69.43%						
ResNet50 102.2MB-> 4.85MB at an acc. 73.65%						
	Small-VGG16 (7.57)	91.35	60.01	1.6 (91.00)		
	LeNet5 (1.90)	99.22	1.72	0.72 (99.16)		

<u>Goal</u>: Find a representation for the weight matrices of a neural network, which is:

- 1) efficient with regard to storage
- 2) efficient with regard to algorithm complexity of the dot product operation.

Matrix Formats

Storage requirements: 60 entries

dense format

Scalar product (second row M, vector a):

- 24 load
- 12 multiply

Heinrich Hertz Institute

- 11 add

濍 Fraunhofer

- 1 write operations

$$4a_1 + 4a_2 + 0a_3 + 0a_4 + 0a_5 + 4a_6 + 0a_7 + 0a_8 + 4a_9 + 4a_{10} + 0a_{11} + 4a_{12}$$

Matrix Formats

$$\begin{split} W: & [3,2,4,2,3,4,4,4,4,4,4,4,4,4,3, \\ & 4,4,2,4,4,4,3,4,4,4,4,4] \\ colI: & [1,3,4,7,8,9,11,0,1,5,8,9,11,0, \\ & 2,3,7,9,3,4,5,7,8,9,1,2,5,7] \\ rowPtr: & [0,7,13,18,24,28] \end{split}$$

Storage requirements: 62 entries

Scalar product (second row M, vector a):

- 20 load
- 6 multiply
- 5 add

🗾 Fraunhofer

Heinrich Hertz Institute

$$4a_1 + 4a_2 + 4a_6 + 4a_9 + 4a_{10} + 4a_{12}$$

- 1 write operations

Matrix Formats

$$\begin{split} \Omega : & [0,4,3,2] \\ col I : & [4,9,11,1,8,3,7,0,1,5,8,9,11,0, \\ & 3,7,2,9,3,4,5,8,9,7,1,2,5,7] \\ \Omega Ptr : & [0,3,5,7,13,16,17,18,23,24,28] \\ row Ptr : & [0,3,4,7,9,10] \end{split}$$

CER format

Storage requirements: 49 entries

Scalar product (second row M, vector a):

- 17 load
- 1 multiply
- 5 add
- 1 write operations

$$4(a_1 + a_2 + a_6 + a_9 + a_{10} + a_{12})$$

[Wiedemann et al. 2019, IEEE TNNLS]

Storage efficiency

Results

Compressed AlexNet after converting it's weight matrices into the different data structures.

[Wiedemann et al. 2019, IEEE TNNLS]

Questions ???

Contact Information:

Wojciech Samek Machine Learning Group Fraunhofer HHI Einsteinufer 37, 10587 Berlin, Germany

Phone: +49 30 31002-417 Mail: wojciech.samek@hhi.fraunhofer.de Web: http://iphome.hhi.de/samek

