CREATE CONNECT LIVE INSPIRE

Volumetric Video: The "MPEG Metadata for Immersive Video" Distribution Format

INTERDIGITAL.

Volumetric Video Creates an Immersive Experience

- Volumetric content is the next generation of video
- Users can experience the sensations of depth and parallax
- Volumetric video enables increased immersion into a content

Experience of Parallax in VR

Volumetric Video is mandatory in VR

Users use volumetric video for:

- Up to 360° video with parallax
- Content that is not flat
- To enhance the overall video experience
 - More immersive
 - More natural
 - Less discomfort

Experience of Parallax on TV

On television, users can experience the sensation of depth and parallax using volumetric video

A key example:

 Dynamic Window Experience

Experience of Parallax on Smartphones

On smartphones, volumetric video can create new experiences on any 2D screen

Adapt Capture Setup to the Degree of Freedom of the Experience

To create a volumetric experience, there is a strong correlation between the degree of freedom of the experience and video rig design

Capture Real Video

- Utilize light field camera arrays
- Leverage the relationship between degree of freedom and rig design
- Consider the challenge of capturing a large environment

Develop Computer-Generated Content

 Creating an up to 360° video with a virtual rig on a computer-generated (CG) scene

Create a Composite

- Develop a scene composition for non full light field capture
- Provides large field of view content
- Use VFX compositing tools

The Encoder Pre-Processing Steps Transforming Multi-Views and Depth Information into Video Streams

MULTI-VIEWS + DEPTH

1

Pruner Step: Remove redundancies between multi-views

1

Create patches from non-redundant information for each view

Packing Step: Create texture and depth atlas information for each frame

TEXTURE + DEPTH + METADATA streams to encode

Finding Redundancies Between Multi-Views

- The Pruner Step
- The Packing Step

MPEG Metadata for Immersive Video Format

- The MPEG MIV format has three streams:
- ✓ Texture
- ✓ Depth
- ✓ Metadata
- Content is encoded using standard compression codec (HEVC)
- Metadata includes camera parameters and patch list

ROADMAP

- Reference Software V1 available
- MPEG Committee draft begins in 2020 (MPEG-I Part 12)

MPEG Metadata for Immersive Video Format: Full Workflow

ID

Encoder

- From Multi-views + depth
- To input streams for compression

Decoder

- From decoded streams
- To device specific viewport

MPEG MIV encoder block diagram

MPEG MIV decoder block diagram

View Interpolation

- View interpolation takes sparse information to create a smooth rendering of immersive content
- View interpolation is an important quality assessment point for the user

Unlocking the Potential of Volumetric Video

To achieve the benefits and opportunities of volumetric video we must:

- Identify new content types where volumetric essence is core
- Develop editing tools to ingest true volumetric content
- Create deep-learning solutions to scale content creation & unlock rendering technologies
- **Implement encoding and rendering tools** for the next generation of capture and display devices
- Develop video formats & distribution solutions that are adapted to diverse use cases and market timelines and show a path to extended immersive experiences