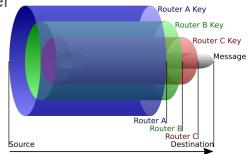
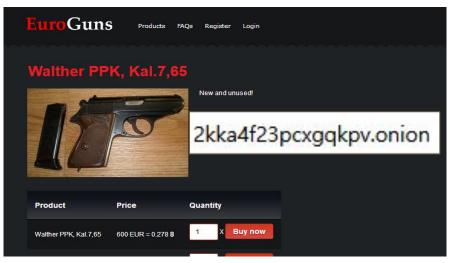

Measurement of Bitcoin in Tor networks


Chungnam National University, Korea Data Network Lab.

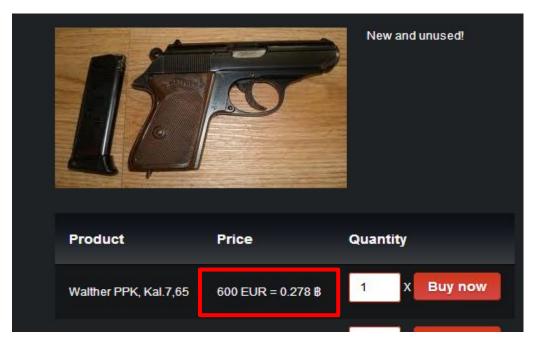
Hyunsu Mun, Jonghyeon Park, Youngseok Lee {munhyunsu, pjh000901, lee}@cnu.ac.kr

Tor and Bitcoin in Hidden Service

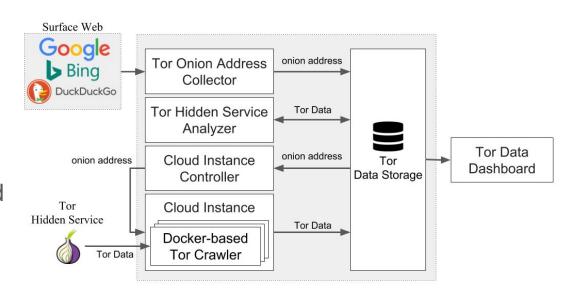

- Tor (The onion router, https://www.torproject.org/):
 - Special network that supports anonymous communication using onion routing
 - Onion routing: A series of network nodes that peels a single layer of the encrypted data, uncovering the data's next destination
 - Apply anonymity to clients for websites
 - A kind of Deep web
- Hidden Service
 - Web site or server that only receives inbound connections through Tor
 - Use a special address called "onion address" consisting of 16
 alphanumeric characters instead of IP address or common domain

Hidden Services in Tor

- Hacking, Personal tracking, Ransomware creation services
- Sale of counterfeit passport, cloned credit card, ID card
- Many markets where various illegal goods are traded, and communities that deal with dangerous contents.

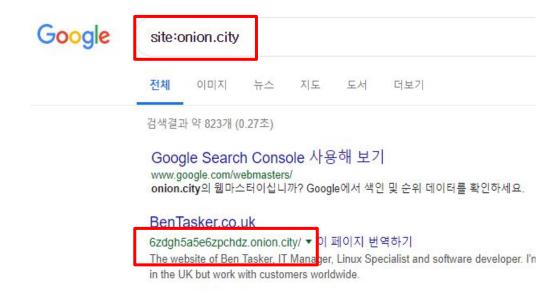


Bitcoin in Hidden Services


- Peer-to-peer transation is available without intervention of the agency
- Difficult to find correlation between trader and Bitcoin address
- Currency of hidden services
 - Anonymity of Tor and Bitcoin

Measurement of Bitcoin in Tor networks

- Collect Tor onion addresses
- 2. Crawl deep web pages
- Extract Bitcoin address in deep web
- 4. Analysis Bitcoin address and contents of deep web

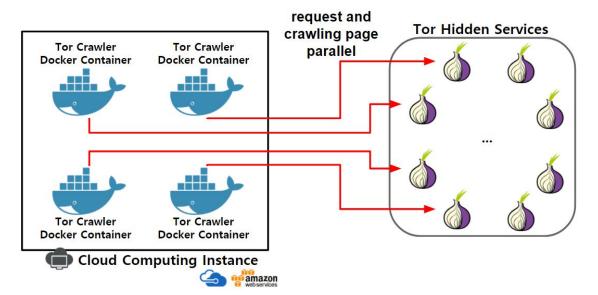

Collect Onion Address using Out-of-Band Search

- A collector of deep web address is required because the onion address contains 16-digit alphanumeric letter, which is different from general URL
- Can find deep web address from the surface web using search engines
- Tor2Web: A tunnelling service to access hidden services from general web

onion.city	onion.nu	
onion.to	onion.lt	
onion.cab	onion.direct	
onion.link	tor2web.org	
onion.lu	tor2web.fi	
onion.rip	torstorm.org	

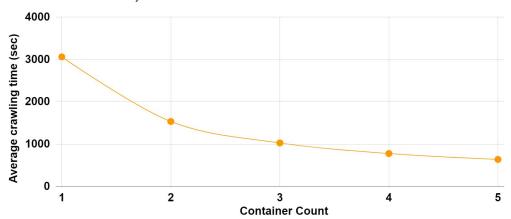
Collect Onion Address using Out-of-Band Search

- Search for every TLD (ex. site:onion.city)
- 174,252 Onion addresses were collected in 30 days
 - o 2,439 Onion addresses after deletion of repeated or subpage addresses

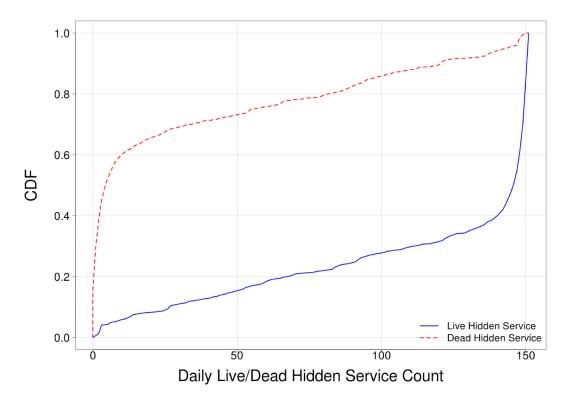


Docker-based Hidden Service Crawler

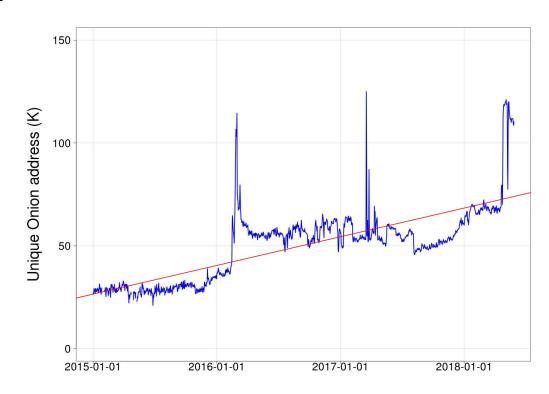
- Tor Onion connection is slow because it connects to a server through at least
 3 nodes
- Slow access to Tor Hidden Services is a challenge to quickly collect and analyze Hidden Services.
- A virtualized crawler on the Cloud Computing Instance
 - Maximize the utilization of computing resources
 - Speed up crawler in parallel


Docker-based Hidden Service Crawler

- Use a docker to analyze hidden services using fewer instances.
- Run one or more docker containers in one instance, such as Microsoft Azure or Amazon EC2.


Improved Crawling Time with Docker

- Experiment on Microsoft Azure's 2 core 7GB memory instance
- Measures the crawling time according to the number of containers for 100 onion addresses
- For one container, it takes 3,062 seconds.
- With five Docker containers, it takes average of 640 seconds (4.78 times faster than one container)

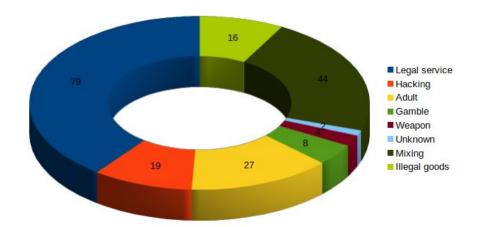

An irregular pattern of Tor Deep Web Service

- 80% of Tor services disappeared in about 80 days
 - Unable to access the address
- New addresses are created consistently
 - Address extraction from Deep Web is required

Onion Address in Deep Web Crawler

- Extract Onion address from Deep web page as well as surface web searching
- Found new address consistently
 - Delete addresses that not accessible for 3 months

Similar Tor Deep Web Page


- Several Onion addresses for same hidden service
 - This makes collecting repeated addresses
 - Collecting is delayed due to the slow connection of Tor
 - Grouping to collect only one Onion from the service
- Using Cosine similarity
 - HTML document word vector
 - HTTP Header

Categories of Tor Deep Web contents

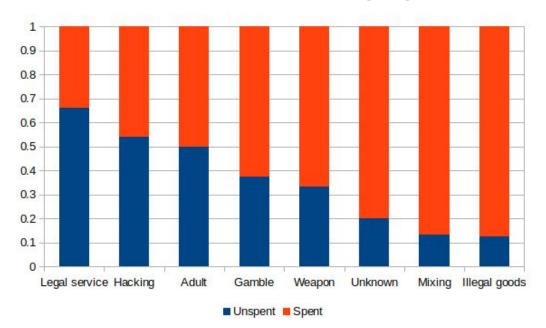
- Categorizing the contents to understand the status of Deep Web Page
 - 8 categories: Adult, Illegal Goods, Mixing, Gamble, Legal Service, Hacking, Weapon, Unknown
- Extract feature of document for TF-IDF
- Classification using Naive Bayesian model
 - Accuracy 83%, Recall 82%


Illegal Services in Tor Dark Web

- Found Bitcoin addresses from 199 hidden service main pages
 - 8% of collected hidden services
- Out of 199, 118 were illegal service (59%)

Extracting Bitcoin address

- Extract Bitcoin address of service provider/user in Deep Web page
 - Able to extract Bitcoin address from the text of collected hidden service page by regular expression
 - [13][A-HJ-NP-Za-km-z1-9]{25,33}
- Extracted 3,917 Bitcoin addresses
 - 2,558 hidden service pages were collected using 12,511 Onion addresses



Bitcoin Address: UTXO

- Unspent Transaction Output (UTXO) can be spent as an input in a new transaction
- Most of the Bitcoin addresses were already used: 87% of 3,917 Bitcoin addresses
 - It is because an illegal service moves to another address after Bitcoin is deposited in its representative address

UTXO according to Bitcoin categories

- In legal service, 67% of the addresses were unspent addresses
- A high rate of spented address appears in illegal goods and mixing Bitcoin

Bitcoin transaction amount by content

- Mixing: A large amount of Bitcoin is involved in mixing transactions to improve the anonymity
- Hacking/Cyber attack: Observed in gathering the remittances of victims of ransomware and hacking
- Illegal Goods, Adult/Child Pornography, Weapon services: about 0.1BTC on average

Category	Maximum Tx Value (BTC)	Minimum Tx Value (BTC)	Average Tx Value (BTC)
Mixing	48500.2	0.0000001	45.8486
Hacking	1280.1	0.0000001	8.9076
Adult	15.0	0.0000001	0.1219
Legal Service	15.0	0.00000008	0.3962
Illegal Goods	3.0	0.00001200	0.1183
Gamble	1.0	0.00001159	0.0232
Weapon	0.9	0.00031184	0.1468
Unknown	10.0	0.00000001	0.0786

Conclusions

- Improving Tor Hidden Service crawler performance
 - Reduced crawling time by up to 79%
 - Onion address clustering reduces address set by 21% and crawling time by 39%.
- Tor Hidden services life and operation looks different from normal web page
 - Many illegal Hidden Services
 - Irregular operation that is difficult to access at all times
- Bitcoin address in Tor deep web actual transaction observation
 - Many Bitcoin purses were used in Bitcoin mixing
 - Illegal goods trading uses Bitcoin most actively in the transation: low UTXO