Security assessment and key management in a quantum key distribution network **Xiongfeng Ma** xma@tsinghua.edu.cn **Center for Quantum Information** In collaboration with Hongyi Zhou, Kefan Lyu, Longbo Huang



## Outline

- Background
  - Quantum key distribution (QKD)
  - Current implementations
  - Field tests of QKD networks
- Security assessment
- Key management

Background

# Quantum Cryptography

- Quantum communication
  - Quantum key distribution, teleportation, secret sharing, ...
- Quantum cryptography
  - Secure against quantum computing, informationtheoretical
- Quantum key distribution cannot replace current communication means
  - Many other tasks, such as authentication and signature, done well with classical means
- In near future, quantum communication cannot replace classical ones



#### Quantum key distribution (QKD)

- BB84 (Bennett & Brassard 1984)
  Point-to-point protocol
- What if introducing multiple users?

QKD network



#### **Current implementations**

- USA QKD network: DARPA, Battelle, Smartgrid, Since 1004
- Japan: Tokyo network, 2015
- Europe: SECOQC, 2008
- Switzerland: Geneva network, 2009
- South Africa: Durban, 2009
- Australia: Melbourne network, 2010



# China's Quantum Secure

## Backbone project

- Total length 2000 km
  - 2013.6-2016.12
  - 32 trustable relay nodes and 31 fiber links
  - GDP 35.6% and population 25.8%
- Metropolitan networks
  - Existing: Hefei, Jinan
  - New: Beijing, Shanghai
- Customers
  - China Industrial & Commercial Bank; Xinhua News Agency; China Banking Regulatory Commission ...



#### Practical Tasks in QKD Network

#### **QKD Network Structure**

- Host layer
- Key Management Layer
- QKD Network Layer
- QKD Link Layer

Tysowski et al. Quantum Science and Technology, 2018, 3(2): 024001.



# Network topological settings

Different scenarios employ different settings



Alleaume, Roueff, Diamanti, Lutkenhaus, New J. Phys. 11 075002 (2009)

## **Practical Tasks**

- Network issues
  - Latency, reliability, scalability, cost
  - Security
  - Key consumption
- Two simple examples
  - In trusted nodes scenario, some of the nodes may be compromised, where the keys are insecure
  - Balance key distribution and consumption
  - Data routing and scheduling



### Task I: compromised nodes

- Designing the classical communication scheme in highest security level with sufficient keys
- Strongest attack
  - Eve may eavesdrop arbitrary nodes and obtain their keys
  - The strongest attack is a cut between Alice and Bob in the graph
  - Eve's strategy: minimum cut problem in graph theory



## **Communication in highest security**

- Communication scheme in highest security level can only be hacked by the strongest attack
  - Each node (except Alice and Bob) broadcast the exclusive-or result of all keys from connected channels.
  - Alice broadcasts the exclusive-or result of all keys from connected channels and the message to be sent.



#### Task II: Key management and data scheduling

- QKD network: graph description  $G = \{N, L\}$ 
  - User: node
  - Distributed key: edge
- Share key => transfer message along a single link
- QKD network state at time t
  - For nodes  $n \in N$ , how much data to transfer to  $c \in N$ ,  $Q_n^c(t)$ ?
  - For channels  $[n, m] \in L$ , how much key stored,  $E_{[n,m]}(t)$ ?



## **Utility optimization**

- Data transmission from n to c:  $R_n^c(t)$
- Utility: the value of the transmitted data:  $U_n^c(R_n^c(t))$ 
  - Concave with  $R_n^c(t)$
  - Defined according to practical cases: e.g.  $\log_2 R_n^c(t)$
- Utility optimization: Optimize data scheduling  $R_n^c(t)$  and key management  $P_{[n,m]}(t)$  to maximize the total utility  $\sum_{n,c} U_n^c(R_n^c(t))$ ,

$$\max_{\substack{R_n^c(t), P_{[n,m]}(t) \\ r_n^c}} \sum_{\substack{n,c \\ \tau}} U_n^c(r_n^c)$$
$$r_n^c = \lim_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^{\tau} R_n^c(\tau),$$

given the following dynamics and constraints.

#### **Dynamics**

• Dynamic queue: how the data (key) size in t+1 evolves from t  $Q_n^c(t+1) = Q_n^c(t) + \sum_b \mu_{[n,b]}^c(t) - \sum_a \mu_{[a,n]}^c(t) + R_n^c(t)$   $E_{[n,m]}(t+1) = E_{[n,m]}(t) + K_{[n,m]}(t) - P_{n,m}(t)$ 



#### Constraints

 Stability constraint: a well-defined problem in field of network -- residual data is convergent with time

$$\bar{Q} = \limsup_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \sum_{n,c} Q_n^c(\tau) < \infty$$

Solution: Lyapunov Function and drift,

$$L(t) = \frac{1}{2} \sum_{n,c} [Q_n^c(t)]^2 + \frac{1}{2} \sum_{[n,m]} [E_{[n,m]}(t) - \theta_{[n,m]}]^2$$
$$\Delta(t) = L(t+1) - L(t)$$

• Key availability constraint: consumption is less than storage

$$P_{[n,m]}(t) \le E_{[n,m]}(t)$$

Tanaka K, Hori T, Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(4):582-589.

## **Optimization algorithm**

• Target function

$$\Delta(t) - \sum_{n,c} U_n^c \left( R_n^c(t) \right) \le B + C + D + E$$

- Main idea:
  - Minimize target function
  - Obtain optimal data scheduling  $R_n^c(t)$  and key management  $P_{[n,m]}(t)$
  - Decouple  $R_n^c(t)$  and  $P_{[n,m]}(t)$



*B*=*constant* 

$$C = \sum_{[n,m]} (E_{[n,m]}(t) - \theta_{[n,m]}) K_{[n,m]}(t)$$

$$D = -\sum_{n,c} \left[ V U_n^c \left( R_n^c(t) \right) - Q_n^c(t) R_n^c(t) \right]$$

$$E = -\sum_{[n,m]} \{\mu_{[n,m]}(t) [Q_n^c(t) - Q_b^c(t)] + (E_{[n,m]}(t) - \theta_{[n,m]})P_{[n,m]}(t)\}$$

Huang L, Neely M J. Utility optimal scheduling in energy-harvesting networks[J]. IEEE/ACM Transactions on Networking (TON), 2013, 21(4): 1117-1130.

## **Optimization algorithm**

- Input of the algorithm. Initialize  $\theta_{[n,m]}$ . At every time slot t, observe  $Q_n^c(t)$ ,  $E_{[n,m]}(t)$ .
- Key generation. Minimize C. Obtain an optimized key generation strategy  $K_{[n,m]}(t)$ .
- **Data transmission.** Minimize D. Obtain an optimized data scheduling strategy  $R_n^c(t)$ .
- Key management. Minimize E. Obtain an optimized key management strategy  $P_{[n,m]}(t)$ .
- Queue update. Use the dynamics of data queue and key storage queue. Obtain  $Q_n^c(t+1)$ ,  $E_{[n,m]}(t+1)$ .

## **Conclusion and Outlook**

- More network issues should be taken into account
- Current graph theory techniques can be employed in QKD network
- Current network techniques can be employed in QKD network
- Generalized to quantum network
  - Entanglement layer
  - Quantum computing

# Thank you!

- International graduate student fellowships are available!
- Welcome to join and visit!

