SOME APPLICATIONS OF QUANTUM INFORMATION THEORY IN INTERACTIVE QUANTUM COMMUNICATION

PENGHUI YAO

NANJING UNIVERSITY

ITU WORKSHOP ON QUANTUM INFORMATION TECHNOLOGY (QIT) FOR NETWORKS

Entropy $H(X) \coloneqq$ $\sum_{x} \Pr[X = x] \log \frac{1}{\Pr[X = x]}$

A Mathematical Theory of Communication

By C. E. SHANNON

CLAUDE E. SHANNON

Von Neumann Entropy $S(\rho) \coloneqq -Tr \rho \log \rho$

SHANNON'S NOISELESS CODING THEOREM

Shannon's source coding theorem:

$$\lim_{n\to\infty} C_n(X)/n = H(X)$$

EXAMPLE OF ONE-SHOT INFORMATION THEORY

[Huf 1952]Huffman coding: expected length $\leq H(X) + 1$

QUANTUM NOISELESS CODING THEOREM

Holevo-Schumacher-Westmoreland Theorem

$$\lim_{n \to \infty} C_n(\rho)/n = S(\rho)$$

TRADITIONAL INFORMATION THEORY

- "studies the quantification, storage, and communication of information"
- Applications: compression, error-correcting codes, cryptography
- Major focus: one-shot / asymptotic and one-way data transmission

COMMUNICATION COMPLEXITY [YAO'79]

CC(f): the minimum # of bits to exchange to compute f(x, y)

INTERACTIVE CLASSICAL COMMUNICATION

- [Bra'10] Information complexity $IC \coloneqq \frac{1}{2}(I(X: mess|Y) + I(Y: mess|X))$
- [BR'11] $\lim_{n \to \infty} CC(f^n)/n = IC(f)$

WHY INFORMATION COMPLEXITY

Message compression:

A C-bit interactive protocol with information complexity I, how much can we compress?

- Braverman et.al. $O(\sqrt{IC})$
- Braverman et.al. $O(I + O(\sqrt{r \cdot I} + r))$
- Braverman & Garg $O(2^{O(I)})$
- For product inputs: Sherstov. $\tilde{O}(I)$

QUANTUM INFORMATION COMPLEXITY?

Q: Is it possible to compress a quantum interactive protocol? How to define a quantum information complexity?

Messages do not exist at the same time due to non-cloning

QUANTUM INFORMATION COMPLEXITY?

[Tou'15] $QIC = \sum QIC$ (each step)

[Tou'15] $QIC(f) = \lim_{n \to \infty} QCC(f^n)/n$

COMPRESS INTERACTIVE PROTOCOLS

A C-qubit quantum interactive protocol with quantum information complexity I, how much can we compress?

Can we compress it to I?

[ATYY'18] No! There exists a protocol which cannot be compressed below $2^{O(I)}$

Bad news? Yes/No.

COMPRESS INTERACTIVE PROTOCOLS

 $\exists f \text{ s.t. } QCC(f) \gg QIC(f) = \lim_{n \to \infty} QCC(f^n)/n$

$\Rightarrow QCC(f^n) \ll n \cdot QCC(f)$

Jointly computing n instances can be much more efficient than computing each one independently.

LEARN/UNLEARN COMPLEXITY

• [Tou'13] QIC = CIC + CRIC

CIC: amount of info the players learned *CRIC* : the amount of info the players unlearned

For any classical protocol, CRIC is always 0.

SET DISJOINTNESS

Set-disjointness (x, y) = 1 iff $\exists i x_i = y_i = 1$

001010011011

010010100000

Set-disjointness (x, y) = 1 iff $\exists i x_i = y_i = 1$

001010011011

010010100000

• [Raz'95] $CC(f) = \Omega(n)$

One step of Grover $\Rightarrow O(\sqrt{n} \log n)$ comm. suffices.

DISTRIBUTED GROVER

Set-disjointness f: (x, y) = 1 iff $\exists i \ x_i = y_i = 1$

• [AA'03] $QCC(f) = \Theta(\sqrt{n})$

AA-protocol, CIC = $\Theta(\sqrt{n})$ and CRIC = $\Theta(\sqrt{n})$

• [LT'17] For any q. protocol with CRIC=0, then QCC(f) = $\Theta(n)$

Unlearning info. is essential for quantum speedup.

FURTHER WORK

- Any nontrivial compression algorithms for quantum interactive protocols?
- Information complexity for multi-party quantum communication?
- The role of unlearning info. for other problems

