

Single-Photon LiDAR

Feihu Xu 徐飞虎

Shanghai Branch, National Lab for Physical Sciences at the Microscale, USTC

Traditional active optical imaging

Reflectivity

3D structure

Using a <u>large</u> number of photon detections
Perfecting de wer photon detections
Perfecting de wer photon detections
leads to image degradation due to shot noise
Reflectivity from number of detected
Presentation distributionally modeled as
additive Gaussian noise
3D from time-of-flight info (shift of photon-

3D from time-of-flight info (shift of photon-count histogram's peak) at each pixel

Active imaging with 1 photon per pixel??

Reflectivity image is featureless

3D image is severely degraded by background light

Single-Photon VS Conventional

	Conventional LiDAR	Single photon LiDAR
Sensitivity	~1 nW (10 ⁹ photons)	~1 photon
Power	High	Low
Range	~10 kilometers	> 100 kilometers
Accuracy	~10 cm (ns)	~mm (ps)

How to do it?

- New software: Computational Algorithm
- New hardware: Single-Photon Imaging System

Results with 1 photon per pixel

Conventional algorithm

Our algorithm

Nat. Commun. 7, 12046 (2016); see also Science 343, 58 (2014)

Computational algorithm

Step 0: calibration

- Calibrate ${f B}$ and also identify set of "hot pixels" ${\cal H}$

- ✓ Filter noise in time domain
- ✓ Spatial correlations

Step 1: estimate scene reflectivity Combine photon-count likelihood with spatial correlation to solve regularized ML estimation (convex)

$$\begin{array}{ccc} & \underset{\mathbf{A}}{\operatorname{minimize}} & \left[\sum_{(i,j) \notin \mathcal{H}} \mathcal{L}(\mathbf{A}_{i,j}; \mathbf{C}_{i,j}, \mathbf{B}_{i,j}) \right] + \tau_A \operatorname{pen}(\mathbf{A}) \\ & \text{subject to} & \mathbf{A}_{i,j} \geq 0 & \underset{\text{photon counts}}{\operatorname{data fidelity of}} & \underset{\text{of scene reflectivity}}{\operatorname{spatial correlations}} \\ \end{aligned}$$

Step 2: censor noise photons

Use $\mathrm{OMP}(\mathbf{T}_k,N_k)$ to locate photon clusters and reject photon arrival times not near to them by pulsewidth

Step 3: estimate scene depth

Combine arrival-time likelihood with spatial correlation to solve regularized ML estimation (convex)

$$\begin{array}{ll} \underset{\mathbf{D}}{\text{minimize}} & \left[\sum_{(i,j) \notin \mathcal{H}} \sum_{T_{i,j} \in \mathbf{U}_{i,j}} \mathcal{L}(\mathbf{D}_{i,j}; T_{i,j}) \right] + \tau_D \operatorname{pen}(\mathbf{D}) \\ \text{subject to} & \mathbf{D}_{i,j} \geq 0 & \text{data fidelity of spatial correlations} \\ & \text{filtered arrival times of scene depth} \end{array}$$

per pixel) Step 1 Step 2 Step 3

Raw data (1 photon

Nat. Commun. 7, 12046 (2016); see also Science 343, 58 (2014)

Push the range limit

$$R_{limit} \propto SNR \cdot \eta_a = rac{PA\eta_S}{R^2hvar{n}} \cdot \eta_a$$
 Laser power (P) Telescope aperture (A) $\eta_S, \, ar{n}$ η_a

Experiment

High coupling efficiency Low distortion High transmittance Noise reduce

Algorithm

Denoise ~ 1 PPP Low SNR reconstruction

- > Optimize the optical design of the hardware system
- Propose a new algorithm for outdoor environments

Single-Photon Imaging

- >1550 nm: eye safe, reduced solar, low loss
- ➤ Use polarization to reduce the noise (x100)
- ► High coupling efficiency (50%)
- Compact, dual-axis scanning

arXiv:1904.10341

Algorithm

Challenges

- > A large FoV in far field covers multiple reflectors
- > A strong background noise in outdoor environment

➤ Only few signal photons can return (~1 photon)

Solutions

- > Global gating to unmix signal from noise
- ➤ Modified SPIRAL-TAP solver to solve **the deconvolution** problem with **3D matrix**
- > Impose a transverse-smoothness using the 3D TV norm

Hardware + Software

Conventional LiDAR ~10 kilometers [OE, 2017]

Conventional algorithm: 100 photon/pixel [pixelwise ML]

New hardware:

Single Photon detection High coupling and detection Advanced noise-suppression

New algorithm:

Sensitivity ~ 1 photon per pixel SNR = 0.031 (200ns time gate)

Laser power: reduced by ~100 times Imaging distance: extended by ~10 times

Long-range 3D imaging

45-km results

Range	45 km	Sensitivity	2.59 photon/pixel
Pixels	16 k	Spatial resolution	0.6 m

Li et al., arXiv:1904.10341 (2019)

22-km imaging in daylight

3-km Complex Scenes

Super-Resolution in long

At 45 km:

- Diffraction limit: ~ 1 m
- Our resolution: ~ 0.6 m

Future work

Longer

~200-km stand-off distance

SNSPD

Laser without ASE

Faster

Speed up the imaging and provide **realtime** imaging for rapid moving targets

Geiger-mode SPAD arrays

Satellite 3D imaging

Low-power single-photon LiDAR mounted on LEO satellites

Other on-going research

- Non-line-of-sight imaging
- Diffuse imaging at near-infrared wavelength
- Advanced algorithms, e.g., machine learning

Xu et al., Opt. Express 26, 9945 (2018); Xu et al., in preparation (2019)

Non-Line-of-Sight Tracking over 1.4 km

People

Wei Li

Zhengping Li

Yuzhe Zhang

Bin Wang

Hao Tan

Yu Hong

Jinjian Han

Pengyu Jiang

Director: Jian-Wei Pan

Collaborators: Cheng-Zhi Peng, Qiang Zhang, Jun Zhang, Yuan Cao

& Hai-Yun Xia, Xian-Kang Dou

Keep smiling, our LiDAR may be watching you © Thank you.

Li et al., arXiv:1904.10341 (2019) Email: feihu.xu@ustc.edu.cn

Parameter	Our system	
Distance	45 km	
Scene	Building	
Size	128×128, 64m×64m	
Average Photon Number/Pixel	2.59	
SNR	0.031 (a time gate of 200 ns, 30 m)	
Detector	InGaAs, 15%, 500-ps jitter, 2200 dark count	
Wavelength	1550 nm	
Objective Lens	f=2800 mm, D=280 mm	
Laser Repetition Rate	100 kHz	
Laser Pulse Width	0.5 ns	
Average Output Power	120 mW, 1.2 μJ per pulse	
Angular Resolution	11.3 μrad	
TDC	Tailored, 50-ps jitter	
Optical Box Size	30×30×35 cm ³	
Coupling Fiber	62.5 μm	