

5G+AI Exploration and Standardization Suggestion

Haining Wang (wanghn.bri@chinatelecom.cn)

Vice Chair of ETSI ISG ENI , Rapporteur of ITU-T Q6/11

China Telecom Strategy and Innovation Research Institute

Two Strategic Areas: 5G and Al

"The 5G era: Age of boundless connectivity and intelligent automation"

- By 2025, the number of 5G connections will reach 1.1 billion (about 12% of total mobile connections), covering 34% of the global population (2.6 billion people).
- 5G will help operators grow revenues globally at a CAGR of 2.5% to \$1.3 trillion in 2025.

Telecom is currently the largest AI market segment

- By 2025, the global telecom industry is expected to invest \$36.7 billion in AI software, hardware and services.
- The annual AI revenue in the telecommunications industry will grow at a CAGR of 48.8%, from \$315.7 million to \$11.3 billion in 2025.

Annual AI Revenue in the Telecommunications Industry by Use Case, World Markets: 2016-2025

5G Promotes AI Applications

Smart medical treatment

Smart transportation

Smart grid

Smart agriculture

Automated industry

AI Promotes 5G Commercialization

New network architecture

SBA + slicing

New radio technologies

Massive MIMO + High frequency communication

New deployment method

Cloud + NFV + MEC

Network architecture and network resources change dynamically

Network configuration becomes more complex

Power consumption increases exponentially

Traditional operation and maintenance methods CANNOT meet the requirements of 5G operation. Al is mandatory for 5G commercialization.

PoC: Al-based Network Slice LCM

AI-based Wireless Network Operation

Features:

- ① KPI distribution visualization
- ② Abnormity diagnosis
- ③ KPI trend prediction
- (4) Capacity expansion

requirement prediction

AI-based DC Energy Saving

Analyze the traffic pattern of different services based on deep learning model, and trigger service migration during off-peak periods to improve energy efficiency.

During off-peak periods, the service loads are migrated and spare servers are turned into idle mode:

- Power consumption of idle mode server is 20W
- Power consumption of working server is 200-500W

Power consumption reduces **30%**. **¥ 357.4** is saved per server per year.

Overview of SDOs and Open Sources

ETSI ISG ENI(Experiential Networked Intelligence)

12

Founding member: China Telecom、HUAWEI、CAICT、University of Luxembourg、Samsung、Xilinx

ENI focuses on improving the operator experience by adding closed-loop AI mechanisms based on context-aware, metadata-driven policies to more quickly recognize and incorporate new and changed knowledge, and hence, make actionable decisions.

		Stage2: ongoing
•Operator reqs •ENI concepts	 Stage1: Tasks: Use Cases Requirements Gap analysis Terminology Output: Group Reports showing cross- SDO functional architecture, interfaces/APIs, and models or protocols, addressing stated requirements 	 Tasks: Reference architecture PoCs demonstrating different scenarios Updated Terminology, Use Cases, and Requirements Output: Group Reports and/or Normative Group Specifications based on phase 1 study
Dec'16 Feb'1 Brainstorm ETSI IS event ENI created	Apr'17 May'17 Sep&Oct'17 Dec'17 G Kickoff 2 nd meeting ^{3rd} meeting in 4 th meeting meeting in in ETSI HQ China, in UK, ETSI HQ SNDIA joint SliceNet workshop, joint Whitepaper workshop published	Mar'18 5 th meeting in ETSI HQ July '19 5 th meeting 7 th meeting8 th meeting in TIM Turin in CT Beijing in 5tonic Madrid Madrid Madrid Madrid Madrid

ENI Members and Participants

Ð

ENI Use Cases

Network Operations

Policy-driven IP managed networks Radio coverage and capacity optimization Intelligent software rollouts Policy-based network slicing for IoT security Intelligent fronthaul management and orchestration Elastic Resource Management and Orchestration Application Characteristic based Network Operation Al enabled Network Traffic Classification

Network Assurance

Network fault identification and prediction Assurance of service requirements

Infrastructure Management

Policy-driven IDC traffic steering Handling of peak planned occurrences Energy optimization using Al

Service Orchestration and Management

Context aware VoLTE service experience optimization

Intelligent network slicing management

Intelligent carrier-managed SD-WAN

ENI Reference Architecture

ENI PoC Projects

Title	PoC Team Members	Main Contact	Start Time	Current Status
Intelligent Network Slice Lifecycle Management	China Telecom Huawei,CATT,DAHO Networks,Intel,China Electric Power Research Institute	Haining Wang	Jun-2018	Stage 1 finished
Elastic Network Slice Management	Telecom Italia S.p.A. Universidad Carlos III de Madrid, CEA-Leti, Samsung R&D Institute UK, Huawei	Marco GRAMAGLIA	Nov-2018	Started
Securing against Intruders and other threats through a NFV-enabled Environment (SHIELD)	Telefonica Space Hellas, ORION,Demokritos (NCSR)	Diego R. Lopez Antonio Pastor	Feb-2019	Started
Predictive Fault management of E2E Multi- domain Network Slices	Portugal Telecom/Altice Labs SliceNet Consortium (Eurescom,University of the West Scotland,Nextworks S.R.L,Ericsson Telecomunicazioni SpA,IBM,Eurecom,Universitat Politècnica de Catalunya ,RedZinc Service Ltd.,OTE – The Hellenic Telecommunications Organisation, SA,Orange Romania / Orange France,EFACEC,Dell EMC,Creative Systems Engineering,Cork Institute of Technology)	António Gamelas Rui Calé	NA	Proposed

Q

07

Suggestion to ITU-T FG-ML5G

Thank you!

Haining Wang (wanghn.bri@chinatelecom.cn)