

Networld 2020 vision for the future **Rui Luis Aguiar** Networld 2020 Steering Board Chair Instituto de Telecomunicações /Universidade de Aveiro 10 ruilaa@ua.pt

Not for profit association of:

Universidade de Aveiro Universidade de Coimbra Universidade de Lisboa **Altice Labs** Nokia Universidade de Porto Universidade da Beira Interior Instituto Ciências e Tecnologias Empresariais Main partnerships Instituto Politécnico de Leiria (IPL-STG) Instituto Politécnico de Coimbra (ISEC) (ISEL) Instituto Politécnico de Lisboa • Instituto Politécnico de Setúbal (EST) • Instituto Politécnico de Tomar (ESTT) Universidade do Algarve (UAlg) ۲ Universidade de Évora (UEv) ٠ Universidade da Madeira (UMad) ٠

Instituto de Telecomunicações - Aveiro

ATNOG – Advanced Telecommunication Stored and Networking group

Outline

Networld

Networld Strong Economic Contributor

18/02/2019

2020

Networld2020 history

What is Networld 2020

- ETP (European Technology Platform)
- For communications networks and services.
- Volunteer organization, no funding
- Open to everyone
 - simple rules for acceptance membership (1000+ members)
 - No fees
 - Most general actions on web
- Meetings (focused) organized few times per year
 - Industry/SMEs/Academia
- Managed by a Steering Board

Membership

Networld

Objectives

- To develop position papers on technological, research-oriented and societal issues
- To seek discussion of issues with decision makers in the political and public domain as well as in the industry and research community to bridge the gap between R&D and the expectations from the European society.
- To regularly develop an updated Strategic Research and Innovation Agenda (SRIA) for Europe in the communication networks
 - To strengthen Europe's leadership in networking technology and services so that it best serves Europe's citizens and the European economy.
- To support the 5G PPP initiative

0

Outline

 $\langle \rangle$

Networld

Strategic Research and Innovation

Agenda

CONNECTED

- Updated ~2-3 years
- Used by EC community to frame future research funding
 - Influencing industry
 - Influencing governments' agenda
- Process triggered by the Steering Board
- Early draft build with resource to an Expert group
- Open consultation to the whole community

https://www.networld2020.eu/wp-content/uploads/2018/11/networld2020-5gia-sria-version-2.0.pdf

Outline

Networld

Key Societal Needs

- Safety for all:
 - Personalised and perpetual protection
- Connectivity for all:
 - Massive amounts of things and systems need to be connected in a scalable and cost-efficient way.
- Service for all:
 - Global reach and optimised local service delivery capabilities
- Cognitive operations making use of Artificial Intelligence and
 - Machine Learning mechanisms
- Performance for all
 - Seemingly infinite network capacity
 - Imperceptible latencies

 \sim

ETWORLD

Smart Networks Vision

2

Networld

CONNECTED HOU

Vision for Smart Networks

Network Architecture and Control

<u>Ubiquitous</u> Satellite communications

۲

Network Architecture and Control

Smart Networks: fundamental <u>cornerstone</u> for the production of <u>all services</u>

Smart Networks: Vision and Use Cases for ~2027

 \sim

world

18/02/2019 SRIA: https://www.networld2020.eu/wp-content/uploads/2018/11/networld2020-5gia-sria-version-2.0.pdf

1. Control of Smart Networks

1. Features of SN Control

CONNECTED CITY

- Cognitive and autonomic network service end-to-end orchestration
 - using existing AI/ML algorithms as well as propose new, network-suitable, distributed AI/ML, to implement datadriven closed control loops that can enable cognitive and (later) intuitive network behaviour
 - based on network and non-network functions and datasets
 - Dynamic pooling of local resources from diverse participating devices
 - Offer programmable analytics to the application layer through open interfaces
 - Support and instantiate more and more service intelligence at the edge, as well as across cores

Network attach

Session mgmt

Policy control

∎ Iñ≣

- Virtualised Network Control
- O Control of Various Virtualization Layers
 - VF performance areas

CONNECTED HOUSE VF Continuity, Elasticity and Portability

VF Security

Fully Integrated Fixed-Mobile Architecture

 Common operational control for ultra-small access nodes and access-agnostic core

User-centric networking

- Slicing and Orchestrators
 - Elasticity of slices in support of dynamic business models with infrastructure providers
 - Orchestration and control to reach out to all infrastructure resources, seamlessly
 - From blueprints to execution on top of a shared, H
 distributed infrastructure
 - distributed execution under contention (different capacities, variable loads from other executed slices)
 - Dependability

0

Across the various attributes of Availability, Confidentiality, Integrity, Performance, Reliability, Survivability, Safety, Maintainability

- Evolution of NFV/SDN and AI/ML-based Network Control
 - No more network elements, but just VFs
 - Human-driven network management & control of Smart Networks will not be possible
 - o Full automation is required to
 - Instantiate a complete end-to-end network (RAN, mobile core, transport network, as well as the Data Network)
 - Provisioning of Network Services across multiple operators and/or service providers when requested, requested via open interfaces
 - Fast lifecycle management (LCM) of the network automatically triggered based on vendor-independent FCAPS management
 - Plug & Play of new components into a live production network
 - Network-specific adaptations of existing AI/ML algorithms are needed
 - Gathering network-typical and network-characteristic datasets for training and validation of any such proposals
 - Current architectures, approaches and procedures to train and validate AI/ML algorithms are mostly focused on static pattern recognition (e.g. images, sounds, diagnostics of fixed analysis data...)
 - Evolve from mostly centralized AI/ML algorithms to distributed ones (challenges of scalability, consistency, consensus, convergence)

Improved security

1,3 SN Control: Edge Computing and Meta-data

2. Radio: Spectrum Refarming and Reutilization

2. Radio: Millimeter Waves and Cellular Networks

Motivation

- mmWave below 50 GHz considered for 5G NR by 3GPP
- Diverse requirements on throughput, latency and reliability, pose new challenges, e.g. on backhaul links
 - Massive content with data rates up to 1000 Gbps
 - Massive control with 1 ms response time to enable mobile edge caching (MEC) and extreme reliability.

Target & Challenge

- Efficient TX and RX beamforming (BF) in terms of high data rate, low power consumption, minimized size.
- Modulation coding scheme implementation with low power, low cost, high throughput.
- □ Develop overall system with target < 1pJ/bit.
- E.g. using multi-stream approach (e.g. OAM),1-bit ADC, constant envelope modulation, etc.

2. Radio: Terahertz Communications

Motivation

- THz communication in the 0.1-10 THz band *), between microwave and infrared bands. DTHINGS
- <1 m range possible at ~10 THz carrier.</p>
- □ > tens m range possible at tens or hundreds GHz.
- While the total consecutive bandwidth of mmWave systems is less than 10 GHz, the one in THz communication is in in the order of multiple THz.

Target & Challenge

- New channel models for THz band: spreading loss, molecular absorption loss, scattering loss, etc.
- New experimental platforms and testbeds that can operate at THz frequencies.
- Novel MAC protocols: The huge bandwidth may eliminate the need for contention-based schemes, packet size optimization, adaptive error control, etc.
- New congestion control at the transport layer to accommodate traffic in the order of Tbps.

^{*)} I. F. Akyildiz, J. M. Jornet and C. Han, "Terahertz band: Next frontier for wireless communications," *Physical Communication (Elsevier) Journal*, vol. 12, pp. 16–32, 2014.

- Modeling and mitigating non-linearities, phase noise, ...
- New modulation types, e.g. femtosecond-long pulsebased modulation.
- ADCs/DACs for tens of Giga samples/sec
- Efficient realizations of MIMO antenna arrays, e.g.
 - Graphene, a carbon based nano-material, supports the propagation of Surface Plasmon Polariton (SSP) waves
 - 1024 antenna elements could be packed in an area smaller than 1mm² if plasmonic material is used.
- □ Regulation and standardization of THz bands, ...

2. Radio: Ultra-Massive MIMO

Motivation

• ...

- Ultra-Massive MIMO (UM MIMO): Antenna arrays in the order of thousands of elements, e.g. to be employed in THz bands.
- Highly directional antenna elements to achieve very high array/BF gains and combat the very large path loss. CONNECTED HOUSE
- Similar to traditional MIMO systems in lower frequencies, UM MIMO can also be used for spatial multiplexing.
 Target & Challenge
- Construction of graphene-based antenna arrays
- Channel modeling of UM MIMO; modeling the mutual coupling among antenna elements.
- □ Feeding/control of each antenna element
- Real time estimation of 1000s of channel elements, feedback, ... to enable UM MIMO operation
- Advanced space-time-frequency coding to exploit all diversities and achieve optimal performance, etc

Array gains of graphene-based antenna arrays

^{*)} I. F. Akyildiz and J. M. Jornet, "Realizing ultra-massive MIMO communication in the (0.06-10) terahertz band," *Nano Communication Networks (Elsevier) Journal*, vol. 8, pp. 46-54, March 2016.

CONNECTED CITY

2. Radio: Enhanced Modulation and Coding

Motivation

- Channel decoder is often considered as the most complex part of the TRX chain.EDTHINGS
- Future new use cases like Tbps throughput, extreme URLLC and low-energy consumption pose new requirements on designing coding and modulation schemes. NECTED HOUSE
- Current mobile systems use BICM and generate uniformly distributed channel input symbols, resulting in a signal shaping loss of up to 1.53 dB for higher order modulations.

Target & Challenge

- Advanced channel coding and modulation schemes for Tbps throughput and extreme URLLC.
- Extreme low-power consumption channel coding and modulation schemes, esp. for extreme mMTC.
- Advanced coded modulation schemes which remove the signal shaping loss and approach the Shannon limit.

 $p(s_I), p(s_Q)$

Example: Probabilistically shaped coded modulation (PSCM) for removing the signal loss.

2. Radio: Improved Positioning and Communication

Motivation

- High accuracy positioning has been identified as a key enabler for many VI applications, e.g. autonomous driving for connected cars, local collaboration of unmanned aerial vehicles, etc.
- FCC set a requirement of ~50 m for localization in case of an emergency call (so-called E-911), which can be met by 3G and 4G^{*}).
- For 5G system, the toughest requirement (as set in 3GPP TS 22.261 v16.2.0 – Service requirements for the 5G System (Rel-16)) is ~0.5 m for locating moving objects such as forklifts, or parts to be assembled by using both 3GPP and non-3GPP technologies.

^{*)} W. Xu, M. Huang, C. Zhu and A. Dammann, "Maximum likelihood TOA and OTDOA estimation with first arriving path detection for 3GPP LTE system," *Transactions on Emerging Telecommunications Technologies (ETT)*, 27, pp. 339-356, 2016.

Target & Challenge

- □ For Smart Factory/I4.0, V2X vulnerable road user discovery, etc, an accuracy of 10 cm may be required.
- Future wireless systems will have higher bandwidth, more antennas, densed network and D2D links, which enables a radio positioning with cm-level accuracy.
- With combined/joint positioning and communication, improved spectral efficiency, energy efficiency, and reduced latency can be achieved.

Example: Cooperative positioining can achieve high accuracy.

2. Radio: Random Access for Massive Connections

Motivation

- The future vision of IoT envisages a very large number of connected devices, generating and transmitting very sporadic data (mMTC).
- How to coordinate such a network without spending the whole network resource and node energy in protocol overhead?

Target & Challenge

Develop

- Design such new random access codes for which the superposition of up to K distinct codewords can still be uniquely decoded. The ID of the transmitter can be found as part of the message, if necessary.
- Challenges include
 - Low complexity/energy protocols, low-cost devices
 - Massive number of devices with low overhead, and potentially with energy and latency constraints.

Source: <u>NTT techn review</u>

1,2. Radio and SN Control: Wireless Edge Caching

Motivation

On-demand video streaming and Internet browsing

- Asynchronous content reuse CEDTHINGS
- Highly predictable demand distribution
- Delay tolerant, variable quality
- □ The wired backhaul to small cells is weak or expensive.
- □ The wireless capacity of macro-cells is not sufficient.
- Wireless caching can increase <u>spectral efficiency</u> (due to efficient reuse of resources) and reduce latency (due to smaller distance between content and user).

Target & Challenge

- Caching is implemented in the core network, and needs to be considered for wireless.
- Challenges include
 - Coding (e.g., combining edge caching with modern multiuser MIMO physical layer schemes).
 - Protocol architectures (e.g., combining edge caching with schemes for video quality adaptation).
 - Machine learning based content popularity estimation and prediction, to efficiently update the cached content.

3. Optical Networks

CONNECTED CITY

- Flexible Capacity Scaling: Coherent technologies and new wavelength bands
- New Switching Paradigms: FlexE, FlexOTN and Flexgrid, plus, SDN control
- Optical Wireless Integration: high capacity and control for RoF with signal QoS monitoring
- Optical Network Automation: common information
- model
- Optical Integration 2.0: Silicon Photonics & amplific.

5. Network and Service Security Security transformation Networks' evolution towards more dynamism and flexibility impacts security Static security solutions do no longer apply Change towards a "Software Defined Security" Security challenges should be considered from the start E.g., slice integrity and isolation across multi-owned infrastructure segments Programmability on the radio side also leads to new range of potential attacks

6. Communication Satellite Technologies

7. Human Centric and Vertical Services

CONNECTED CITY

- Users will have a greater level of control
 - Going from software-centric to human-centric
 - E.g., be more transparent in interactions with digital services
- Evolution towards an ICT continuum platform
 - E.g., clouds, networks, IoT and data will enable multitudes of entities and devices to combine to form dynamic and intelligent collectives
 - Will intelligently learn from the network environment and historic data, and dynamically adapt to a changing situation
- Industries are experiencing a digital transformation
- O Business models are changing and opening new opportunities

7. Human Centric and Vertical Services

٠

Verticals will benefit from higher levels of abstraction • Fully automatic and network unaware mode • Network agnostic automation processes CONNECTED HOUSE E.g., usage of AI/ML techniques • Automation in the orchestration process E.g., intent-oriented service definition over abstracted infrastructure, realtime telemetry of services and massive correlations, proactive adjustment of parameters to meet service intents "Follow-me" actions to maintain QoE in composed SLAs Extreme automation and "zero-touch" service orchestration Use of data-analytics, AI driven orchestration, cloud-native management applied to NFV orchestration

8. Future and Emerging Technologies

o data,

CONNECTED CITY

- Evolution of future networks, based on
 - better underlying technologies, drastically improving communication and computing performance,
 - new techniques for network softwarisation and related primitives and interfaces,
 - intelligent and autonomous algorithms,
- o applications integrated with the network, performing in part also networking functionality

8. Future and Emerging Technologies

- Main future technologies cred on
 - Physical stratum
 - Nano-things networking, e.g. using graphene antennas CONNECTED HEALTH
 - Bio-nano things networking, e.g., allowing the engineering of ONNECTED HOUSE biological embedded computing devices
 - Quantum networking
 - Algorithms and data
 - Impact of the use of AI/ML on the network
 Impact of IoT on the network
 - Impact of Blockchain technologies on the network
 - Evolution of protocols: ultra-low latency, increased flexibility, privacy and security becoming more relevant, etc.

8. Future and Emerging

10

- Technologies
 Main future technologies (cont'd)
 - Applications

Application level networking: the network must evolve to support highly distributed content, stored, processed, and delivered from a pervasive fog computing infrastructure, with effective quality of experience management

Applications (components) in the network: deep integration of application and service functionality pervasively within the network

Applications Making Specific Demands to the Network: the traditional networking API (i.e., the Berkeley Sockets API) is too low-level, too limited, and does not expose the dynamic, changing, nature of the network, nor the high-level services and features needed to support modern applications

Outline

Networld

Our plans for now

- Start a series of cross-disciplinar meetings in Europe, to understand the relation between other disciplines and communications
- To renew the "Visions" model, with a global event collecting inputs from diferent entities

we will welcome cooperation from other parties for

this

Conclusions

