Application of Machine Learning on APT Defense

Tian Tian, Zhenyu Qiu, ZTE Corporation

Advanced Attack Vs. Defense

Machine Learning --- Simplify and assist the experts' work.

Application Case 1: Improvement of DGA Detection

C&C Communication

<u>C&C server (Command & Control</u> <u>Server)</u>

 Communicate with hosts which are infected with malwares in the botnet and direct their attack behavior

- Common technique used in <u>C&C Location</u>
- Many sophisticated malware families use DGA instead of IP addresses thus avoid the blacklist detection and defense
- ----0 C&C server **DNS**server 212.211.123.10 212.211.123.10 **BJGKRE.COM** WFDCF.COM 2 3 ASDFG.COM *(1) Infected with malware (1)(2)Locate C&C Server
 - ③ Receive instructions
 - ④ Excute instructions

DGA Detection Method 1

WORD

1...

Template Feature• TLDs probabilityPronounce
Feature• Number of word-like unitCommon Feature• Domain length
• Number of Repeat letters

Gozi/Matsnu/Rovix 100,000 +

Problems of Method 1

Defects of Method 1

- High false positive rate on domains especially for chinese corporations
- Current features and classifiers have limit improvement on detection accuracy
- Need expert knowledge on related domain
- Complicated procedure of training and inference
- Bottlenecks in training and testing efficiency

Examples of legitimate domains detected
as dga:
Gouqi001.com
18183.com
500px.me
17zwd.com

Method	Precision	Recall	FPR
RF	0.936	0.938	0.08

- Huge numbers of raw features > 100,000 +
- Expert knowledge needed for data analysis and linguistics ...
- Big effort for feature selection
- Long training time

Method 2 Deep Learning on DGA Detection

URL domains belong to natural language text

Transform DGA detection to characterlevel text classification

Pros:

- High efficiency: Char-level dictionary contains much less element
- End-to-end procedure: No need to extract features manually
- Improve Performance: Make full use of big data and extract implicit complicate features, leading to accuracy improvement

Three neural network structures used:

- Convolutional neural network
- Recurrent nerual network with gate mechanism(LSTM)
- Attention mechanism(based on RNN network structure)

Workflow of Method 2

• Training workflow

Results of Deep Learning on DGA

Positive Samples (DGA Domains)

- Remove duplicate samples
- 600 thousands samples from cooperative partners
- 200 thousands samples from Bambenek^[1]

Negative Samples (Normal Domains)

- 1 million domains from Alexa
- 50 thousand domains from China not in Alexa's top ranking list
- Remove duplicate samples

- Average accuracy improvement rate: 11.4%
- Average FPR improvement rate: 93.7%
- Average FNR improvement rate: 62.3%

Final pick: CNN model (high efficiency and acceptable performance)

Reference: [1] osint.bambenekconsulting.com

Application Case 2: Malware Detection

Method of Malware Detection

<u>Unknown malware</u>

An effective weapon for avoiding detection in the initial compromise, delivery and exploitation phases of advanced cyber attacks

General Method

- Omit parameters of all behaviors, only consider behavior sequence itself
- Based on expert knowledge, conduct detection rules to analyze file dynamic behaviors

Problem

- Overall accuracy of system is not so good
- False positive Rate (set malicious as Positive) is high, too many normal files being detected as malicious
- Expert knowledge base is still lack of rules for all kinds of files and security scenes

Files

File Dynamic Behaviors

New method:

Machine learning + NLP techniques

Sandbox

Parameter Abstraction & Data Preprocessing

• Rich parameters

Behavior	Parameters
readFile	[filePath:"c:/system32",fileType:exe]
copyFile	[srcPath:"c:/windows",dstPath:"d:/",fileType:dll]
modifyRegistry	[regPath:"HKEY/",key:"",value:""]

• Data preprocessing procedure

Feature Abstraction & Classification

• Feature abstraction

Feature Type	Features
Statistical Features	behavior sequence length, consecutive repetitive behavior sequence ratio, write- file behaviors' count and ratio on sensitive file
Probabilistic Features	behavior+parameter entropy, information gain
NLP Features	tf-idf features, isi features, ida features, nmf features

Classification

Classification Algorithm Type	Classification Algorithm			
Linear Model	logistic regression, SVM(linear kernel),			
Tree Model	random forest,			
Boosting Model	xgboost,			

Training & Detection Workflow

Classification Results

Positive Samples (Malicious Files)

- 1,000,000+ malicious from real scene
- Remove duplicate and paradox samples

Negative Samples (Normal Files)

- 500,000+ normal files from real scene
- Remove duplicate and similar samples

* Results are based on xgboost algorithom.

Conclusion

- In cyber security, machine learning ,especially deep learning can improve efficiency of some tasks, e.g. DGA detection and malware detection.
- However, machine learning techniques are still not ready for practice application for its lack of interpretability and reliable accuracy. Also, it's being vulnerable to some GAN attack, which is another research area in cyber security.
- Expert knowledge should be combined with maching learning techniques, which could improve accuracy of the models. In some tasks, we still need to use mannual rules like detecting specific malicious behaviors of a malware, which could help us extract more effective features for training models.

Thanks !

