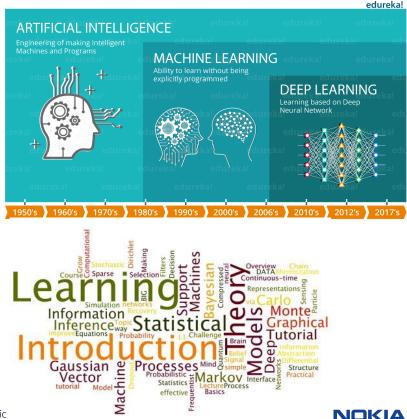
NOKIA


Machine Learning for 5G RAN

Rajeev Agrawal Algorithm Innovations Mobile Networks ATF

Confidential

What is Machine Learning (ML)?

- Arthur Samuel (1959): **Machine learning** is a field of computer science that uses statistical techniques to give computer systems the ability to "**learn**" (i.e., progressively improve performance on a specific task) with **data**, without being explicitly programmed
- Recent resurgence based on:
 - Data
 - Massive computing Hardware
 - Algorithms Software and Applied Math/Stats/EE Systems
- Used for (some examples):
 - Optical character recognition, Speech recognition
 - Web search
 - Human genome analysis
 - Self-driving cars
 - Many, many more

What can AI/ML do for networks? Opportunities and Challenges

Opportunities

Value Added Services: New revenue streams, business models

Improve network and user performance

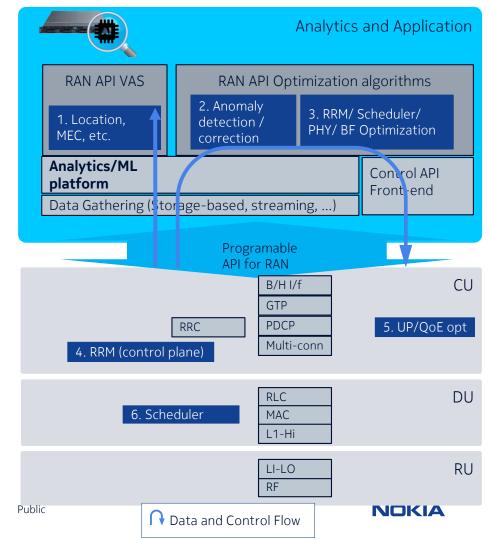
Reduce complexity

Increase Automation: Reduce R&D effort

Challenges

- Significant gains of AI/ML only expected in complex scenarios that are hard to model
- Today, gathering even simple data is difficult; gets even more challenging with 5G (2000+ parameters for a typical 5G node; 50x operational complexity increase from 4G to 5G)
- Legacy networks not designed for AI, need to rethink/rebuild

Pursue the opportunities holistically and address the challenges systematically


Al/Machine Learning for RAN Holistic Solution Architecture

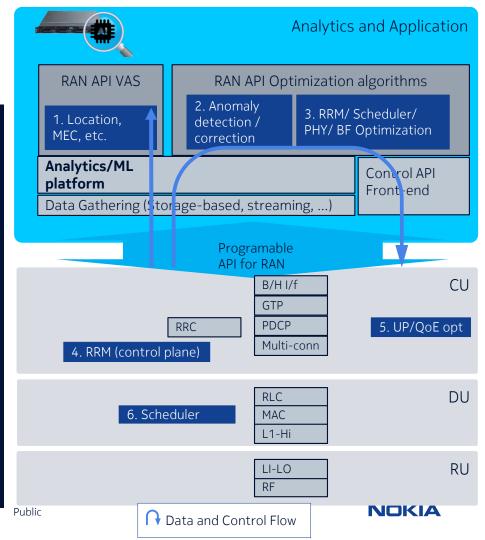
Two buckets of use cases/applications:

- on-top-of-the-RAN [1-3]
- embedded-in-the-RAN [4-6]

Key building blocks:

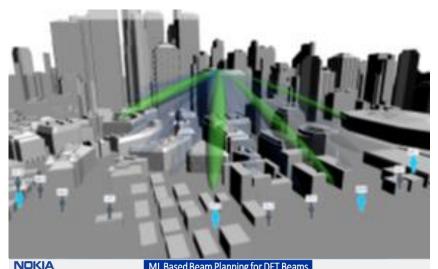
- A. Innovative AI/ML Algorithms @ RAN solve most complex problems and provide differentiation
- **B. New RAN communications interface** enables a networked Intelligence
- **C. AI/ML platform, middleware, toolkit** @ edge of the network creates digital value
- **D. AI/ML HW** accelerators provide raw computational power for AI/ML
- → Holistic Solution Architecture

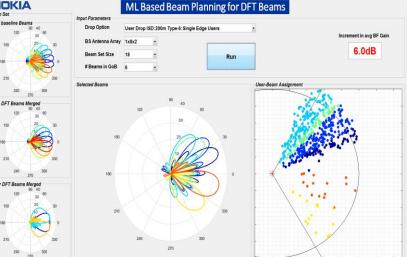
AI/Machine Learning for RAN Systematic Step-by-step Solution


Step-by-step approach helps in systematically realizing the potential of AI/ML in RAN

- I. <u>Step I Moving beyond the hype</u>: Study and Identify areas where AI/ML can make a substantial difference in terms of performance or complexity/TCO
- II. <u>Step II Build the foundation with 4G</u>: Develop (a) Algorithms based on AI/ML on top of existing 4G RAN based on (b) a Programmable API for data exposure and control, and (c) a Platform and Middleware for data gathering, analytics and machine learning platform. Algorithms can also be extended to 5G.

Extensive work ongoing on Steps I & II

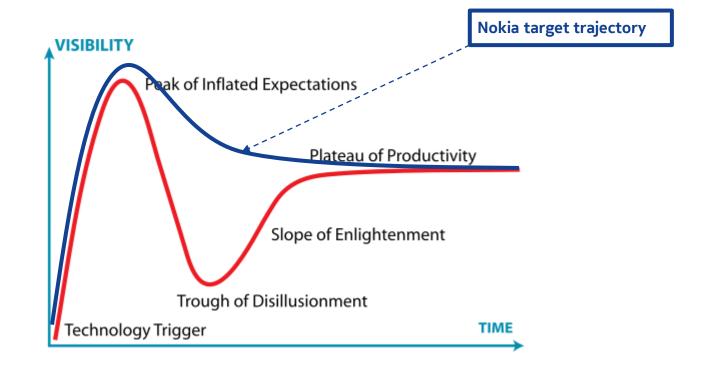

III. <u>Step III – Prepare the ground for 5G</u>: Develop Algorithms based on AI/ML embedded in the 4G/5G RAN leveraging from Phase II, with enhancements the Platform and Middleware, for data gathering, analytics and machine learning platform.


Concurrent work on Step III as these are long lead items

Algorithms for Use Cases/Applications A few examples

- Indoor Location
 - Need RF fingerprint along with location data for training
- UL Control/CQI RRM Optimization
 - Rely on simulation for offline training, but also need field data for online learning of cell/time specific variations which are hard to model
- Scheduler for 5G massive MIMO
 - Combinatorial complexity is prohibitive to do exhaustive search (beyond greedy heuristic algorithms). ML with massive offline training based on simulations is useful to approximate optimal solutions.
- Beam Pattern Optimization for massive MIMO
 - Solution dependent on cell topology/ propagation as well as user traffic variations which are hard to model.

Public


AI Powered RAN

Some Concluding Thoughts


```
Al-powered RAN - Hype Cycle
Need to go beyond the hype!
```


NOKIA

Holistic and Systematic Step-by-step Solution Way Forward

2 buckets of use cases/application/algorithms

- on-top-of-the-RAN
- embedded-in-the-RAN

4 key building blocks that help frame and differentiate Nokia solution

- A. Algorithms
- B. RAN API
- C. ML Platform, Middleware, Toolkit
- D. HW acceleration (ReefShark, data center)

Step-by-step approach (building on previous steps)

- I. Go beyond hype and study in-depth and design good algorithms
- II. Start with Algorithms on-top-of-the-RAN, API, ML Platform Don't need major surgery on RAN and can do easily with existing/classical RAN without embedded algorithms Can start with 4G and extend to 5G Use this to engage customers, collect and analyze real network data
 - I. Design, study and develop **embedded-in-the-RAN** algorithms along with **HW acceleration** dimensioning and IP blocks

Specific application/use case/algorithm may or may not be successful, but taken collectively some will succeed, so business case should be built on

- taking these collectively, putting framework with building blocks in place
- Deciding on specific application/use case/algorithm as "features" later when detailed studies have been

