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SG Technology

" The well known pillar
technologies for 5G

o Enhanced Mobile Broadband
(eMBB)

o Ultra Reliable and Low Latency
Communication (uRLLC)

 Mission critical services
o Massive M2M/loT Communication

(mMMTC)
" Field trials are coming lm
" Machine learning emerges 3G 4G 5G

334 m:-p 1-::|t} r-.-1r:-r:-5 10 Ghps
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From Driving Assistance to Autonomous Driving

Green car at 50 MPH
implies 273 feet
safe distance

Parking Truck
to Block View
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Q1: Do we need networking for a
single autonomous vehicle as good
as human driving?

Q2: Do we need networking for a
single autonomous vehicle more
reliable and safe than human driving?

Q3: Do we need networking for
«__a Massive operation o__f AVs?

ITU Workshop, August 2018 KC Chen, USF EE

o O |




UNIVERSITY OF
| ’ SOUTH FLORIDA

COLLEGE OF ENGINEERING

Department of Electrical Engineering

A new technology paradigm emerges

ULTRA-LOW END-TO-END LATENCY
MOBILE NETWORKING AND MASSIVE
MTC DEVICES
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Al Without Wireless Networking

The New ﬂork @imes  hitps/nyti.ms/2u3QDYx

TECHNOLOGY

Self-Driving Uber Car Kills Pedestrian in
Arizona, Where Robots Roam

By DAISUKE WAKABAYASHI MARCH 19, 2018

SAN FRANCISCO — Arizona officials saw opportunity when Uber and other
companies began testing driverless cars a few years ago. Promising to keep
oversight light, they invited the companies to test their robotic vehicles on the
state’s roads.

Then on Sunday night, an autonomous car operated by Uber — and with an
emergency backup driver behind the wheel — struck and killed a woman on a
street in Tempe, Ariz. It was believed to be the first pedestrian death associated
with self-driving technology. The company quickly suspended testing in Tempe as
well as in Pittsburgh, San Francisco and Toronto.

The accident was a reminder that self-driving technology is still in the
experimental stage, and governments are still trying to figure out how to regulate
it.

Uber, Waymo and a long list of tech companies and automakers have begun to
expand testing of their self-driving vehicles in cities around the country. The

Single-agent Al of only
on-board sensors does
not satisfactorily work!
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To see is not necessarily to believe!

ex Computer Vision &

P LIDARS creates
~ misjudgments of Al
toward accidents
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Fog Computing and Roadside Sensors
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New Technology Paradigm
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Ultra-Low Latency ereless Networkmg
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Data
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Ultra-Low Latency Wireless Networking
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K.-C. Chen, T. Zhang, R.D. Gitlin, G. Fettweis, “Ultra-Low Latency Mobile
Networking”, to appear in the IEEE Network Magazine.

NEW ROAD TOWARD URLLCIN
MOBILE NETWORKING
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Open-Loop Wireless Communication and
Proactive network association

Average Number of APs Utilized v.s. Delay

* §| | —— simulation (3, = 8x107" | Delay performance of the
\[/ < Conventional —&— simulation (3, =65x1071|{ conventional handover
Ll it +— simulation (1, =510 |1 schemes, that each IMM is
served by only one AP, and the
{ proposed stochastic network
| optimization procedure are
| shown for different densities

. | of randomly distributed IMMs,
o represented
| by 2,.

107"}

Delay (s)

107" i i i i [S.-C. Hung, K.-C. Chen, IEEE T-MC, early access]
1 1.5 2 2.5 3 3.5

Average Number of APs Utilized
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Concept of Virtual Cell

= Traditionally, one BS serves = Virtual Cell: one mobile

multiple mobile stations station is served by multiple
o Edge of cell suffers low SINR BSs via cooperative
and complex handover communication

mechanism of closed-loop

, o Suitable for virtual networks
and centralized control

o No clearly defined operation

o,
ol ©
rSulme
rSulme
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Vehicle-Centric Networking

= Each vehicle is the center (i.e. the only mobile station) of a virtual

cell. Multiple APs serve this virtual cell.
= Network/Radio slicing of virtual networking at each AP to serve the

virtual cell.
o Not a new concept

Network
. . . . OrfRadio
o Lacking of realization of entire system Slicing

Network
OrRadio
Slicing

The orange vehicle forms
a virtual cell served by 3 APs
and each AP supports a radio
slice of virtual wireless network
to this virtual cell.

SDN/NFV is needed now!
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Between AV and AN

Uplink

Network
Or Radio
Slicing

Network
Or Radio
Slicing

Anchor

Node

Network
Or Radio
Slicing

Anchor Fog
Node Computing

Downlink

Please recall path-time codes can be exactly applied in multi-path two-hop networking!
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Between AV and AN

Cooperative Communication:
 Amplify-and-Forward (AF)

» Decode-and-Forward (DF) : Anchor

Node
 Compress-and-Forward (CF)

Signal combining methods

Downlink

Please recall path-time codes can be exactly applied in multi-path two-hop networking!
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eterogeneous Computing & Networking
for Intelligent Mobile Machines
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Non-Ortho ultiple Access & Anticipatory
Mobility Management & Open-Loop Error Control

Evenfisingf@DMA,Bignalsl Network Network
OrfRadio OrRadio
Slicing Slicing
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Network
OrfRadio
Slicing

Netwiork
OrfRadio
Slicing
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»»»»»»» work@ue®ohoBhysicall

resourcefridutage
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Node Computing
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Antmpatory Moblllty Management

= Technology Challenge:

o Due to proactive network association, anchor node must determine
candidate APs for ultra-low latency message delivery in the downlink

= Machine learning and artificial intelligence is not only preferred in

such networking, and is a must. We name as anticipatory mobility
management.

o However, it is actually a new problem in machine learning to develop
the optimal methodology, though many methods might work.

(H)\ (@) B
MACHINE LEARNING PARADIGMS FOR é é) ’
NEXT-GENERATION WIRELESS NETWORKS Ao,

CHUNXIAO JIANG, HAIJUN ZHANG, YONG REN, ZHU HAN,
KWANG-CHENG CHEN, AND LAJOS HANZO

IEEE Wireless Communications. April, 2017
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Machine Learnmg Applled to Networkmg

= Machine learning has been applied to wired and
wireless networks for decades

o Supervised Learning: EM optimization etc. to MIMO
communications

o Unsupervised Learning: Clustering in distributed networks
and ad hoc networks

o Reinforcement Learning: Markov decision process and thus
POMDP and Q-learning, to optimize resource utilization in
fixed and wireless networks

= Amount and diversity of data gives a new frontier of
technology opportunities.

= Common ground between statistical communication
theory and statistical learning theory

ITU Workshop, August 2018 KC Chen, USF EE 21
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Big

Taxi data might be most similar to mission-oriented behavior of autonomous vehicles.
We consider a dataset of more than 12,000 taxis in Beijing fo

% Data Analytics
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Trajectories for 3\' different vehicles over a 24h
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period
KC Chen, USF EE



UNIVERSITY OF
l ’S SOUTH FLORIDA
COLLEGE OF ENGINEERING

Department of Electrical Engineering

Zooming onto the City with All Trajectories

Road Network
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Road Network
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Randomly Deployed APs

Road Network with Randomly Placed Access Points

Randomly deployed APs
stand for the worst case

scenario
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lllustration of Connections to a Vehicle

Road Network

Trace of Connected Access Points for Vehicle
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Fog/ Edge Networkmg Only
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Microscopic View

Some Traces of Visited Access Points

Road Network with Randomly Placed Access Points

Some Traces of Visited Access Points
=

4300 4400 4500
x (m)

Some Traces of Visited Access Points

4100 4200 4500

25 Access Points within 600m x 600m square area
in average
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Predlctlon on Connected APs

= n Access Points (APs) associated with a particular Anchor Node (AN)

o This is NOT a traditional vehicular mobility prediction

= Connections for a particular vehicle at a particular time instance
given by connection vector
o e.g.[01000101]denotes connections to APs 2, 6 and 8
= Predict the next connection vector given m previous connection
vectors
o Form=3,n=8
01011000
X 01100001
10100010

Y=00011001

ITU Workshop, August 2018 KC Chen, USF EE 29
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via Big Vehicular Data

Each virtual cell can proactively associate to K APs. Edee N ki

e It associates with K,,,, APs of the strongest SINR g€ etwor INg
(or other signaling to indicate suitability) if more
than K,,,, APs are in radio range.

e It associates with K APs, if K < K,,,,. APs are in
radio range.

Suppose each AP has an ID. Given the rule of association,

we could obtain time series representation by defining AP Representatlon Of
association vector as Kn 0W|edge
X(t) = [XPO)XP()..X D) € {0,1}4
@ 1, if the i™ AP is connected (1
XW(t) = - th '
0, 1if the +"" AP is not connected
Problem. Considering one single vehicle driving on roads, Prediction

given a series of time t1,...,t,, and the corresponding AP i
association vector X (t1),..., X (t,) of the vehicle, predict (trying NOT to use GPS data

X (tni1) for tpe1 > ty. due to accuracy and privacy)

ITU Workshop, August 2018 KC Chen, USF EE 30
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Naive Baye5|an Approach Benchmark
= Each AP treated independently Y =1[Y, Y, ... Y]

P(Y; =11X) PXI|Y; = DP(Y; = 1)
P(Y; =0|X) P(X|Y; = 0)P(Y; = 0)

= Assume independence over the APs in X as well
X, X, X X

0|
x{o
1

= P(X|Y) = P(X, = "001"|Y,)P(X, = "110"|Y;) ... P(X; = "010"|Y})

ITU Workshop, August 2018 KC Chen, USF EE 31
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Benchmark Performance

»  Simulation with a maximum of 3 simultaneous connections

Actually
Connected # 0 1 2 3
APs
1 81.81% 18.18% - -
2 3.47% 29.14% 67.5% -
3 0.53% 4.73% 17.78% 76.94%

Light Green — Past Connections, Light Blue — Predicted Connections

ITU Workshop, August 2018 KC Chen, USF EE 32
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Benchmark Performance

=  Simulation with a maximum of 3 simultaneous connections

_ Correctly Predict-  of APs
Actually v

Connected #

A:S The idea of Anticipatory
Mobility Management
works and benchmark

performance shows
room to improve!

Light Green — Pasti€Onnections, Light Blue — Predicted Connections
ITU Workshop, August 2018 KC Chen, USF EE 33



UNIVERSITY OF
| SF SOUTH FLORIDA .

COLLEGE OF ENGINEERING .

Learning Process

* The recursive process at t, involves three stages:

o with observing a new association vector, derive the
corresponding location and update the transition
probability between locations

o based on the derived locations and the transition
probability, predict the location at time t_,,.

o according to the predicted location and vectors of APs,
obtain the prediction for the association vector at t_,;.

_:_;_::::;?X(tn) = [0(t,)0(t,—1)0(tn—2)0(ty—3)]

-

X(ty) X(t;) X(t3) X(ty) X(ty) X(t;) X(t3) X(t,)
ITU Workshop, August 2018 KC Chen, USF EE 34
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RecursweBayesnan Estimation

* We intend to estimate Px, . ,;x,., (Xn+1|X1:n)
= Taking location 0 into consideration,
I:)Xn+ 1|_>'n+1(xn+1|‘4+ 1)P—>'n+1|X1:n (‘4"‘ 1|Xl:n)

= To form the basis of optimal Bayesian estimation

Based on the Markovian property, there is a recurrence
relation between the posterior belief, P, x ... (vi|X1:n), and
the prior belief, P, x,.._, (W |X1n-1), satisfying

I%"'n X 1:n-1 (%lxl:n_ 1)
6
= P—>'nI—>'n—1(‘4|‘4—1)P—»n_1|X1;n_1(\4—1|X1:n—1)d\4—1 ( )

and

I:’x lon (Xn IV Po x40 -4 (VA X2 - 1)
X0 (M [X1:n) = R 2 (Xn VAP, |x1:1n_11(/n|xlzn_1)d/n (7)

ITU Workshop, August 2018 KC Chen, USF EE 35
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Inferring Iocatlon from association vector

@hlunk area

e - 2 ”':“t--,‘o)re[age area of C(wmg T e
connected AP’-“"'fj,‘“_ dlSLOnnect AP i

(a) Possible positioning basing (b) Possible positioning with ad-
on information from connected ditional information from discon-
APs nected APs

In case (a), with considering connected APs, the enclosed area that the vehicle
possibly locates is the intersection of the coverage area of the connected APs
(yellow colored). In case (b), in addition to the connected APs, some of the

disconnected APs also provide extra information about the possible location.
ITU Workshop, August 2018 KC Chen, USF EE 36
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Further Location Prediction

Centroid

Utilizing Monte Carlo method for obtaining a set of points for representing

the area of possible location and making prediction accordingly. For randomly

spread points, we retain the ones in the yellow colored area only for

representing the possible location. Based on these points, we may estimate the

moving velocity accordingly, and make use of it to predict the future location
th+1) 7 Atn) + V- (th+1 — tn)

ITU Workshop, August 2018 KC Chen, USF EE 37
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lllustration of Prediction

to ty t, ts ts ts te
An example of AP prediction with the ordering of time corresponding to the frames.
The ellipses in the figure indicate the coverage area of APs. The blue colored ones means
that we predict the AP to be connected and it is indeed connected, the green ones
means that we predict the AP to be disconnected but it is actually connected, and the
red ones means that we predict the AP to be connected but it is actually disconnected.

The orange marker in the figure represents the predicted location of the car.
ITU Workshop, August 2018 KC Chen, USF EE 38
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SatlsfactoryPredlctlon Is Achievable

Method of Calculating Optimal Velocity
# of # of correctly predicted APs
connected
APs 0 1 2 3
1 26.68% 73.32%
2 8.49% 13.68% 77.83%
3 1.25% 2.12% 2.74% 93.89%

Please note the APs are randomly deployed, and the
case of one correctly predicted AP can work.

Optimal deployment of APs based on map can improve a lot.

IEEE ICC 2018]

orkshop, August 2018

KC Chen, USF EE
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" MacHitie bearhing Enables Mobile

Networking

= AMM is possible by the aid of data analytics, using real-time
learning, location and velocity estimation, and previous connected

APs.

o Downlink ultra-low latency networking and proactive network
association is realizable by AMM, and therefore ultra-low latency

mobile networking can be realized

o For many cases, simple facilitation of machine learning works well,
particularly for real-time operation

o The key is to identify a proper machine learning technique(s) to
facilitate the goal, based on the property of available data
=" Future enhancements of AMM

o AP deployment based on the map, particularly avoid no coverage and
poor coverage by only one AP.

o More methods like random forest
o Deep learning assists AN and transfer learning to the edge.

ITU Workshop, August 2018 KC Chen, USF EE 40
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In the 2018 IEEE Globecom, we further demonstrate that wireless
networking can renovate machine learning and thus enhance Al systems.

IT IS ALONG JOURNEY ... BUT WE CAN
SEE THE LIGHT FROM END OF TUNNEL

Thank you for your attention & Questions?

ITU Workshop, August 2018 KC Chen, USF EE
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Statistical Learning

Statistical learning theory was introduced in the late 1960°s and remained a mathematical statistical
analysis as the problem of function estimation from a given collection of data. Particularly since
the invention of widely applied support vector machines (SVMs) in the mid-1990’s, statistical
learning theory has been shown to be useful to develop new learning algorithms.

Vladimir N. Vapnik is the main contributor of Vapnik-
Chervonenkis (VC) theory of statistical learning theory and
a co-inventor of support vector machines. He was born in
the Soviet Union in 1936 and received the PhD in statistics
at the Institute of Control Sciences in 1964. In 1990, Dr.
Vapnik moved to the US and joined the Adaptive Systems
Department, AT&T Bell Labs., where he and his colleagues
developed support vector machines. He was inducted into
the National Academy of Engineering in 2006.

ITU Workshop, August 2018 KC Chen, USF EE 42
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Machine Learning

" The canonical model of the learning conducted in a general
statistical framework by minimizing the expected loss using
observed data, which consists of three components

o A generator of random vectors x, obtained independently from
a fixed but generally unknown distribution P(x)

o A supervisor who returns an output vector y for each input
vector x, according to a conditional distribution P(y|x) that is
fixed but again generally unknown

o A learning machine capable of selecting the one from a set of
functions f(x, a), a € U, to predict the supervisor’s response in
the “best” possible way

" supervised learning
o A teacher tells the results of learning to be good or not

" unsupervised learning

ITU Workshop, August 2018 KC Chen, USF EE 43
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Superwsed Learning

* To identify the criterion of selecting best possible
approximation to the supervisor’s response, we
intend to measure the discrepancy D (y, f (x, a))
between the response f(x, a) by the learning
machine and the response of the supervisor to a
given input x, where such a measure is also
known as loss or distortion.

R(a) = f D(y, f(x, @) dP(x,y)

ITU Workshop, August 2018 KC Chen, USF EE 44
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Types of Learnlng Problems

Pattern Recognition: This class of learning problems is also known as
classification in literature. Let the supervisor’s output y take on the
discrete values, say binary valued as y € {0,1}. Then, f(x,a),a € ¥,
become a set of indicator functions. One example of loss function is

defined as
_0ify=f(x )
D(y,f(x,a)) = {1, if y # f(x,a)

Regression and Estimation: Suppose the supervisor answers real-valued y

and f(x,a),a € Wis a set of real functions which contains the optimal
regression function

f (5 ope) = | yaP O

In case f(x, a) belongs to L, functional, the optimal regressmn function is to
minimize the risk functional of D(y,f(x @) = [y — f(x, a)]?

Density Estimation: For a set of densities p(x, a), a € ¥, density
estimation considers to minimize the risk functional of

Dlp(x, @)] = =~ logn(x, a)

45
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Given input data X = (X, .., X,.), the predictor Y is obtained through the linear model
r
=1
b, is known as the bias, which usually can be included in X. Then, if b = (b,,.., b,),
Y = X™h

As described in earlier chapters, there are many ways to define measure of performance.
The most common measure is least square-error. In machine learning, such an approach is

to identify coefficients b to minimize residual sum of squares

RSS(B) = ) (v — xTb)?

RSS(b) is a quadratic function of parameters and hence minimum always exists but may
not be unique.

RSS(b) = (v — Xb)" (y — Xb)
y is an N-vector of outputs from training set. Differentiating with respect to b, we get the
normal equations
b=X'X)"'XTy

ITU Workshop, August 2018 KC Chen, USF EE 46
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Advanced Regression

Remark (Ridge Regression): Ridge regression shrinks the regression coefficients by
imposing a penalty on their size. The ridge coefficients minimize a penalized RSS.

N

B”dge=argmbin z y; — by — Zx :b; +/1sz

i=1 j=1

where A > 0 controls the scale of shrinkage, or the convergence speed. The method can
be also used in neural networks as weight decay.

Remark (LASSO): The least absolute shrinkage and selection operator (LASSO) method is
evolved from Ridge regression using L,, norm.

N

Bla550=argrrgn z y; — by — le]] +AZ||b |

=1 j=1

whﬁmagh?pegugust idely applied in modern statistical data analysis. 4
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K-Nearest-Nel hbor

= Being widely used in pattern classification, the nearest neighbor method utilizes
those observations in the training set T closest in the input space to form Y. The
k-nearest neighbor is defined as

F=7 Y

X;EN(x)
where Ny, (x) is the neighborhood of x defined by the k closest points x; in the training sample set.
We need a metric to define “closest” and we usually assume Euclidean distance.
= We seek a function f(X) to predict Y given input values from X. The expected
prediction error (based on Euclidean distance) is

EPE(f) = E{[Y — F(X)]*}
= The predictoris f(x) = E{Y|X = x} In other words, the predictor is just the

conditional mean (or conditional expectation), which is also known as the
regression function.

= Onthe other hand, the nearest-neighbor method actually attempts to directly
implement this concept by training data. At each point x, we might ask for the
average of all such y;’s with input x; = x. As there are typically one observation at
any point x,

f(x) = AVGly;|x; € Ni(x)]

AVG(-) denotes the operation of average, and N, (x) is the neighborhood containing the k points

in T closest to x.
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