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Machine Learning
• Machine Learning (ML) allows the computer to use set of observations to 

perform certain tasks. 

• Types of ML:
• Unsupervised Learning.

(e.g.,  clustering)
• Supervised Learning 

(classification and regression) 
• Reinforcement learning.

(learning policy with trail and 
error)

• Others (online learning, semi 
supervised .)

• Components in ML:
• Learning objective.
• Data.
• Model and learning.

The application and the scenario 
identifies the type of ML

𝑥𝑥
? ?
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Supervised ML
• Available labeled data can be used to train the ML model.

• Problem types: 
– Classification

e.g., labels (aka classes) belong to finite countable set.
– Regression, 

Labels could be continuous real line.

• Models include:
– Linear regression.
– Logistic regression.
– Decision trees.
– Neural Networks.
– Support vector machines.

𝑥𝑥𝑛𝑛 �𝑦𝑦𝑛𝑛
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Applications in Wireless Communication
• ML can be used to perform complicated task where mathematical models 

are very complex or difficult to capture.
• There have been large literature:

– Different wireless technologies such as wireless sensor, ad hoc 
and cellular networks.

– Centralized and distributed systems.
– All network layers.

• Example of applications in Physical layer:
– Ranging and localization, e.g., [1].
– Performance prediction and channel Estimation, e.g.,[2,3].
– Resource allocation, e.g.,[4].
– Beam prediction, e.g., [5].
– Modulation recognition[8]. 
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Neural Networks
• Computational model that mimic the 

neurons in the brain.
• Multi layer Neural Network (NN) was proven 

to be universal function approximator [6].
• Proposed to model many aspects  in 

wireless communication, such as [7]:
– Amplifiers’ non linearity.
– Equalization.
– Decoding in spread spectrum.

• Used also as channel model and prediction 
[10,11].

• Backpropagation is a popular method that 
use gradients to train NN.

Feedforward NN
(multilayer perceptron)
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Deep Neural Networks
• Is hierarchical learning.
• Most modern models are based on multi layer NNs.
• Although ML and NN existed long before today, deep learning became relevant 

today due [9]:
– The remarkable success in language and image recognition and computer vision.
– The advancement in hardware and parallel computing capabilities.
– Availability of many deep learning open source software. 
– The big data era! which challenges analysis with conventional mathematical models.

• DL has also found its way to wireless communication with the emerge of new 
complex channels and systems, for instance:

– Massive MIMO.
– Multi band communication (mmWave and cmWave).
– Underwater and molecular channels.
– Cognitive radio systems.
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Example of Deep Neural Networks Blocks

Long Short-Term Memory (LSTM)
(Popular in text prediction, speech recognition,

Natural language processing)

Convolutional NN (CNN)
(popular in computer vision)

Is a Recurrent NN (RNN), it uses gates that control
what data to be remembered, 

released and erased

Filters that extract features and do .
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Multi Layer Neural Networks for Channel Prediction
• Several empirical models exist to predict the pathloss 

value, eg., Okumura-Hata (OH) model and Ericsson 9999 
model.

• Other deterministic models that depends, for instance, on 
topographic database can be used.

• Empirical Models are simple to use but lack accuracy, 
while deterministic models are complex and provide better 
prediction.

• NN can be a solution to the trade-off, as it is simple to use 
and can capture complicated environment efficiently.
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Multi Layer NN for Channel Prediction: Example
• In [25], the authors use different NN architectures to predict the path loss 

in a macrocell for a rural area.
• The feature input are: 

– Tx-Rx Distance, BS antenna height, terrain clearance angle (TCA), terrain usage, 
vegetation type (VT) and vegetation density around rx.

• Training Testing Scenarios:
– scenario-1:  same cell different route: 4 routes for training 1 route for testing.
– scenario-2: Different cells: train one cell and test on another.
– scenario-3: All cells: randomly chosen points.

• Example for an NN with (6,3,1), the average error ̅𝜖𝜖, and standard 
deviation 𝜎𝜎𝜖𝜖

• For scenario-1: ̅𝜖𝜖 = −3.5 dB with 𝜎𝜎𝜖𝜖 = 7.4 dB, compared to ̅𝜖𝜖 =-12.8 and 
𝜎𝜎𝜖𝜖 = 8.7 dB for OH.

For scenario-2:  ̅𝜖𝜖 = −4.9 dB with 𝜎𝜎𝜖𝜖 = 8.3 dB, compared to ̅𝜖𝜖 =-12.4 and 
𝜎𝜎𝜖𝜖 = 11.4 dB for OH.
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Channel Models with multilayer NN
• For indoor [24], at 900 MHz, use position, antenna heights, gains, type of 

indoor room, and some other penetration information of the direct path, 
eg., number of walls in the direct path, error is reported as an RMSE of 
4.4 dB.

• [11] Similarly for indoor, with slightly different feature details, such as the 
use of  the percentage of walls, rooms etc., train in one building and test 
in another one. Report error around 2 dB with standard deviation 7 dB.

• For macrocells, [26] use databases for land use/land cover information, 
and with error ~ 0, and standard deviation ~ 8dB.

• [10] Use 27 input features that describe the several rays, which are 
derived mainly from geometrical of the environment and the tx-rx
locations, gives an average error of ~ 1 dB.

• [27] Propose hybrid model that combine the empirical models (eg, OH) 
with NN, in suburban environment, show good prediction capability.
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Application in Wireless-Channel Estimation in Massive MIMO

• [20] views channel matrix as 2D natural 
image.

• apply approximate massage passing NN 
that is based on denoising convolutional 
neural network (DnCNN).

• [21] aim sto reduce the CSI feedback in massive MIMO system.
The proposed Deep Network learns a transformation from CSI to a near-optimal number of 
representations and an inverse transformation from codewords to CSI.
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Application in Wireless – Others

• [13] uses Deep Learning (LSTM and CNN layers) for 
detection molecular channel where no knowledge of the 
channel is assumed.

• Detection over conventional channels discussed, e.g., 
for OFDM system [12] and MIMO system [15].

• In general there have been number of studies that unfold 
iterative schemes through multi-layer NN, eg., for 
decoding using belief propagation [18].

• Several other works used multi-layer NN to predict 
channel parameters, such as AoA at the device side 
using the observations at the BS [19].
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Dual- (Multi-) Band Systems

• Promises higher throughput and quality of service.

• Different structure, e.g. :
– cmWave used for control and mmWave for data.
– Joint data transmission over cmWave and mmWave.
– cmWave as backup for data transmission.

• Why Deep Learning?
– Dual Band is unconventional channel, with complex join 

propagation properties.
– Base station have access to data.
– Pilot training on both bands is expensive.
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Learning In Stochastic Environment [22] 
• Given “features”, how to the Band 

Assignment (BA)?
• Model the band assignment as a 

classification problem, “1” assign to 
mmWave band.

• Stochastic channel based on a proposed 
jointly normal power distribution [16].

• Proposed a Threshold Based Band 
Assignment (TBBA) solution using the joint 
normal power distribution.

• TBBA requires the knowledge of 
distance and channel statistics.

• Linear and Logistic Regression (LR and 
GR) in addition to multi layer NN

 Learning based (especially 
multi layer NN) could 
outperform the theoretical 
scheme.
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Ray tracing based
• Simulated a more realistic channel through a ray 

tracer.
• Total of 1184 points in each bands.
• Considered several NN structures.

 Multi layer NN show consistent good BA decisions.

 The use of cmWave power improves the BA accuracy.

 BA based on distance only has the worse performance.
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Sequential BA For Mobile Users [23]
• Device move in correlated 

environment.

• Correlation difficult to capture 
analytically.

• Given current observed features 
along with the previous decisions 
what is the BA for a future time step?

• Used 1000 sequences generated 
over the ray tracing environment.

• Initially assumed that both  cmWave 
and mmWave are observable.

Motion using Semi-Markov Smooth
Mobility Model over the grid. Need to

predict the BA after 𝑛𝑛 steps
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Proposed Network
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Result of Sequential Data  results

• Used 200 
sequences for 
training 800 for 
testing.

• Naïve use the 
current best 
band as future 
BA.
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• Goal: determine DoA spectrum (or beamforming 
codebook entry) at remote BS if channel at macro BS 
is known

• Purpose: reducing overhead of channel estimation

Motivation [30]
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Neural network architecture

• 4 layer structure
• Nonlinear function for hidden layers: LeakyRLu
• Nonlinear function for output sigmoid
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Performance for one-ring model

• Comparable to CRLB
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Performance for ray tracing model

• 85% of time error is less than 10%
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Concluding Remarks
• Deep learning showed unprecedented performance in different fields.
• It also showed competitive performance in wireless communication.
• 5G consists is envision to consist of unconventional system and technologies 

opening the opportunity to explore the power of Deep Learning.
• Deep learning can be used to 

– Replace several iterative schemes.
– End to end systems.
– Channel and non linearity models.
– To provide schemes that may combine virtually nonhomogeneous side information.

• Deep Learning for propagation channel can be used to improve channel 
prediction capabilities, and improve system design and speed.

• Our initial results in propagation channel show that it could capture complex 
channels with consistent accuracy.

• There are large number of open problems where deep learning can be 
employed.
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Application in Wireless – End-to-End Systems [9]

• Use multi layer NN to perform joint modulation and 
coding.

• The system is an autoencoder that find a “compressed” 
efficient representation of the data at the transmitter 
side.

• Learns to decode the received signal over the “channel”.
• Was able to learn a good modulation and coding with 

competitive performance.
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