Data-Driven Control of Cellular Networks

Sandeep Chinchali, Marco Pavone, Sachin Katti Stanford University

Data-Driven Network Control is Ubiquitous

Video Streaming

Robotic Taxi Fleets

IoT Sensor Updates

Optimal Control

Challenges of Network Control

- 1. Data-driven forecasts
 - What *features/statistics* are needed for control?
- 2. Many Input Variables
 - Forecaster and Controller
- 3. Increasingly:
 - Data boundaries

Video Streaming

Past Throughputs

Network Operator

Cloud Video Services

Future Throughputs (*Risk-adjusted*, ~30s)

Video QoE

Bitrate

$$QoE = \sum_{k=0}^{K} Quality(Bitrate) - \sum_{k=0}^{K} Stalls - \sum_{k=1}^{K-1} |Quality_{k+1} - Quality_k|$$

Private: User mobility

Private: Buffer State

Approach: Reinforcement Learning (RL)

Reinforcement Learning (RL)

Goal: Maximize the total reward

 $\sum_{t} r_t$

Cellular Network Traffic Scheduling (AAAI 2018)

Internet of Things (IoT)

Delay Tolerant (Map/SW updates)

Real-time Mobile Traffic

Delay Sensitive

Why is IoT traffic scheduling hard?

Contending goals

- Max IoT data
- Loss to mobile traffic
- Network limits

Optimal Control

RL Schedules Sensor Updates

- 1. Network State Space (Cell congestion forecasts)
- 2. IoT Scheduler Actions (Traffic Rate)
- 3. Operator policies/reward: efficient use of network

RL Dynamics: Live Network Experiments

$$p(s_{t+1}|s_t, a_t)$$

$$C_{t+1} = \left\{ \begin{array}{ll} \underbrace{C_t + Ma_t}_{\text{controlled state } \text{historical commute}}_{\text{controlled state } \text{historical commute}}_{\tilde{C}_t + \Delta \tilde{C}_t} + \epsilon_t & \text{if } a_t > 0 \\ \underbrace{\tilde{C}_t + \Delta \tilde{C}_t}_{\tilde{C}_{t+1}} + \epsilon_t & \text{if } a_t = 0 \end{array} \right\}$$

RL exploits transient dips in utilization

Controlled Congestion

Utilization gain

Application 2: Mobile Video Streaming

How will forecasts of network conditions improve ABR?

Palo Alto Cell Throughput Diversity

Insight: Foresight of *true* network condition helps

Solution: Dynamically splice specialized controllers (metaRL)

Palo Alto (Our data) + FCC/Norway (Pensieve)

Generalize to FCC/Norway data from Pensieve

Re-analysis of Pensieve (Sigcomm 18, Mao et. al.)

$$QoE = \sum_{k=0}^{K} Quality(Bitrate) - \sum_{k=0}^{K} Stalls - \sum_{k=1}^{K-1} |Quality_{k+1} - Quality_k|$$

Linear QoE (hi-thpt)

hi-220-train, pensieve 200 180 cum_reward_pensieve 140 120 all vlo lo mid hi

HD QoE (vlo-thpt)

Future work

- Broad-vision for Time-Series Control
 - Data-driven forecasts/ control strategies
 - Intrinsic data boundaries
- 2. Value/Price of Information used for Long-Term Control?
- 3. Privacy/Information Leakage

Questions: csandeep@stanford.edu

Extra slides

Claim: Decouple but co-design predictor and controller

Why not **end-to-end** learning?

Why Decouple?

- 1. Natural Data Boundaries
- 2. Modularity (Re-use forecaster)

Why Co-design?

- 1. Tune forecasts to control risk
- 2. Robust Adversarial Training

RL Formulation

$$\mathcal{M}^F = (S^F, A^F, \mathcal{T}^F, R^F)$$

$$a_t^F = \phi(s_t^F)$$

$$\mathcal{M}^C = (S^C, A^C, \mathcal{T}^C, R^C)$$

Forecaster

$$r_t^F = -r_t^C$$
Adversarial

$$s_t^C = \begin{bmatrix} x_t^{C,p} \\ x_t^J \\ \phi(s_t^F) \end{bmatrix}$$

$$s_t^F = \begin{bmatrix} x_t^{F,p} \\ x_t^J \end{bmatrix}$$

Quantifying Sub-optimality Gap

With oracle knowledge of network condition

Have to learn network condition

Value/Price of Timeseries Variables?

IoT Traffic Scheduling (AAAI 2018)

patterns