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 Challenges in current communication systems

 Mathematical channel models versus practical channel imperfection

 Block structures versus global optimality

 Effective signal processing algorithms versus low costs

 Why deep learning?

 Data-driven method, no need for channel models

 End-to-end loss optimization for global optimality

 Concurrent architectures, suitable in fast-developing parallelized processing 

architectures 

Motivation
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Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” submitted

to IEEE Commun. Mag., July 2018.



 Neurons: nonlinear function of a weighted sum of the outputs of neurons 

in preceding layers 

 Minimize a loss function by adjusting the weight on training set

 Deep Neural Networks: with more than one layer

DNN
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Block Structure or End-to-End?
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 Joint channel estimation and detection

 MIMO detection using deep learning

Wireless Systems with Block Structure
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Joint Channel Estimation and Signal Detection
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Pilot OFDM block + data OFDM block

Channel varying frame-to-frame, constant over pilot and data blocks

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection 

in OFDM systems,” IEEE WCL, vol. 7, no. 1, pp. 114 – 117, Feb. 2018. 
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Training to predict the transmit data

Training with received OFDM samples generated under diverse channel conditions 

Optimizing parameters to minimize distance of model output and transmit data

DNN Model Training



9

Impact of Pilot Number

Better than LS; comparable to MMSE

Better than MMSE with 8 pilots
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Impact of Cycle Prefix

Conventional methods: error floor when SNR over 15 dB

Deep learning method: robust to CP removal
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Impact of Clipping Noise

Clipping and filtering: reducing PAPR but introducing nonlinear noise

Better than MMSE when SNR over 15 dB

More robust to the nonlinear clipping noise



 Joint channel estimation and detection

 MIMO detection using deep learning

Machine Learning for Communication Blocks
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MIMO Detection:

y = Hx + n

 Goal: estimate x from received signal y and channel matrix H

 Conventional Detectors:

 Optimal detector: ML detector, optimal detector, high complexity 

 Linear detectors: ZF,LMMSE, low complexity, poor performance 

 Iterative detectors: AMP-based detection, EP-based detector, excellent performance, moderate 

complexity, performance degradation with ill-conditioned channel matrix

Motivation: deep learning improve performance of iterative detectors

Deep Learning for MIMO
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H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li “A model-driven deep learning approach for MIMO systems,”

submitted to IEEE GlobalSIP’18 , Anaheim, CA, Dec. 2018.



Architecture

Math Iteration:

Trainable Variables (only two!):      

OAMP-Net
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 OAMP-Net outperform the OAMP algorithm and LMMSE-TISTA network

 OAMP-Net obtain more performance gain under correlated channels

 Number of trainable variables is 2 times of iteration number and independent of  the number of 

antennas N and M

Similation Results
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 Background

 Transmitter learns to encode the transmitted data into x

 Receiver leans to recover the transmitted data based on y

 Challenges:

 Channel transfer function is unknown

 Channel is time-varying

 Approaches:

 Reinforcement Learning

 Conditional GAN

End-to-End Learning based Communications
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H. Ye, G. Y. Li, B.-H. Juang, and K. Sivanesan, “Channel agnostic end-to-end learning based

communication systems with conditional GAN,” submitted to IEEE Global Commun. Conf., Abu Dhabi,

UAE, Dec. 2018.



 Reinforcement Learning Formation:

 Agent: transmitter

 Environment: channel and receiver

 States: source data

 Actions: transmit signals

 Advantage and Disadvantage:

 Channel model is unnecessary

 Reinforcement learning for continuous action space is hard

E2E based on Reinforcement Learning
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 GAN:

 Generator: maps an input noise, z, to a sample 

 Discriminator: maximizes the ability to distinguish between the two categories

 Conditional GAN:

 Both G and D are conditioned on some extra information, m

E2E based on Conditional GAN
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E2E based on Conditional GAN
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 Conditional GAN: model the channel output distribution
 Surrogate of the real channel when training the transmitter
 Received pilots as a part of conditioning for time-varying channel



Simulation Results: AWGN Channels
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 Similar to AWGN with standard 16 QAM input

 Similar to hamming(7,4) with MLD



Simulation Results: Rayleigh Fading Channels
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 Learn to generate samples with 

different instantaneous h

 Similar E2E result in coherent 

detection and joint detection and 

channel estimation 



 Conclusions:

 Learning for improving blocks in communication systems

 Learning for novel end-to-end communicaiton archietecture

 Future Directions:

 Deep learning based physical layer security

 Tradeoff between system performance and training efficiency

 Communication metric learning

 Open access real-world data sets 

Conclusions and Future Topics
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