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 Challenges in current communication systems

 Mathematical channel models versus practical channel imperfection

 Block structures versus global optimality

 Effective signal processing algorithms versus low costs

 Why deep learning?

 Data-driven method, no need for channel models

 End-to-end loss optimization for global optimality

 Concurrent architectures, suitable in fast-developing parallelized processing 

architectures 

Motivation
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Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” submitted

to IEEE Commun. Mag., July 2018.



 Neurons: nonlinear function of a weighted sum of the outputs of neurons 

in preceding layers 

 Minimize a loss function by adjusting the weight on training set

 Deep Neural Networks: with more than one layer

DNN
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Block Structure or End-to-End?
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 Joint channel estimation and detection

 MIMO detection using deep learning

Wireless Systems with Block Structure
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Joint Channel Estimation and Signal Detection

7

Pilot OFDM block + data OFDM block

Channel varying frame-to-frame, constant over pilot and data blocks

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection 

in OFDM systems,” IEEE WCL, vol. 7, no. 1, pp. 114 – 117, Feb. 2018. 
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Training to predict the transmit data

Training with received OFDM samples generated under diverse channel conditions 

Optimizing parameters to minimize distance of model output and transmit data

DNN Model Training
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Impact of Pilot Number

Better than LS; comparable to MMSE

Better than MMSE with 8 pilots
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Impact of Cycle Prefix

Conventional methods: error floor when SNR over 15 dB

Deep learning method: robust to CP removal
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Impact of Clipping Noise

Clipping and filtering: reducing PAPR but introducing nonlinear noise

Better than MMSE when SNR over 15 dB

More robust to the nonlinear clipping noise



 Joint channel estimation and detection

 MIMO detection using deep learning

Machine Learning for Communication Blocks
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MIMO Detection:

y = Hx + n

 Goal: estimate x from received signal y and channel matrix H

 Conventional Detectors:

 Optimal detector: ML detector, optimal detector, high complexity 

 Linear detectors: ZF,LMMSE, low complexity, poor performance 

 Iterative detectors: AMP-based detection, EP-based detector, excellent performance, moderate 

complexity, performance degradation with ill-conditioned channel matrix

Motivation: deep learning improve performance of iterative detectors

Deep Learning for MIMO
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H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li “A model-driven deep learning approach for MIMO systems,”

submitted to IEEE GlobalSIP’18 , Anaheim, CA, Dec. 2018.



Architecture

Math Iteration:

Trainable Variables (only two!):      

OAMP-Net
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 OAMP-Net outperform the OAMP algorithm and LMMSE-TISTA network

 OAMP-Net obtain more performance gain under correlated channels

 Number of trainable variables is 2 times of iteration number and independent of  the number of 

antennas N and M

Similation Results
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 Background

 Transmitter learns to encode the transmitted data into x

 Receiver leans to recover the transmitted data based on y

 Challenges:

 Channel transfer function is unknown

 Channel is time-varying

 Approaches:

 Reinforcement Learning

 Conditional GAN

End-to-End Learning based Communications
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H. Ye, G. Y. Li, B.-H. Juang, and K. Sivanesan, “Channel agnostic end-to-end learning based

communication systems with conditional GAN,” submitted to IEEE Global Commun. Conf., Abu Dhabi,

UAE, Dec. 2018.



 Reinforcement Learning Formation:

 Agent: transmitter

 Environment: channel and receiver

 States: source data

 Actions: transmit signals

 Advantage and Disadvantage:

 Channel model is unnecessary

 Reinforcement learning for continuous action space is hard

E2E based on Reinforcement Learning
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 GAN:

 Generator: maps an input noise, z, to a sample 

 Discriminator: maximizes the ability to distinguish between the two categories

 Conditional GAN:

 Both G and D are conditioned on some extra information, m

E2E based on Conditional GAN
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E2E based on Conditional GAN
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 Conditional GAN: model the channel output distribution
 Surrogate of the real channel when training the transmitter
 Received pilots as a part of conditioning for time-varying channel



Simulation Results: AWGN Channels
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 Similar to AWGN with standard 16 QAM input

 Similar to hamming(7,4) with MLD



Simulation Results: Rayleigh Fading Channels
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 Learn to generate samples with 

different instantaneous h

 Similar E2E result in coherent 

detection and joint detection and 

channel estimation 



 Conclusions:

 Learning for improving blocks in communication systems

 Learning for novel end-to-end communicaiton archietecture

 Future Directions:

 Deep learning based physical layer security

 Tradeoff between system performance and training efficiency

 Communication metric learning

 Open access real-world data sets 

Conclusions and Future Topics
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