Deep Learning in Physical Layer Communications

Professor Geoffrey Ye Li School of Electrical and Computer Engineering Georgia Institute of Technology

Contributors: H. Ye, H.-T. He, and B.-H. Juang

Outline

- Motivation
- Wireless Systems with Block Structure
- End-to-End Wireless Systems

Motivation

Challenges in current communication systems

- Mathematical channel models versus practical channel imperfection
- Block structures versus global optimality
- Effective signal processing algorithms versus low costs

□ Why deep learning?

- Data-driven method, no need for channel models
- End-to-end loss optimization for global optimality
- Concurrent architectures, suitable in fast-developing parallelized processing architectures

Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, "Deep learning in physical layer communications," submitted to *IEEE Commun. Mag.*, July 2018.

DNN

- Neurons: nonlinear function of a weighted sum of the outputs of neurons in preceding layers
- > Minimize a loss function by adjusting the weight on training set
- Deep Neural Networks: with more than one layer

Block Structure or End-to-End?

Wireless Systems with Block Structure

□ Joint channel estimation and detection

□ MIMO detection using deep learning

Joint Channel Estimation and Signal Detection

- Pilot OFDM block + data OFDM block
- > Channel varying frame-to-frame, constant over pilot and data blocks

H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE WCL*, vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

DNN Model Training

Training to predict the transmit data

Training with received OFDM samples generated under diverse channel conditions

> Optimizing parameters to minimize distance of model output and transmit data

Impact of Pilot Number

Better than LS; comparable to MMSEBetter than MMSE with 8 pilots

Impact of Cycle Prefix

> Conventional methods: error floor when SNR over 15 dB

> Deep learning method: robust to CP removal

Impact of Clipping Noise

- > Clipping and filtering: reducing PAPR but introducing nonlinear noise
- > Better than MMSE when SNR over 15 dB
- > More robust to the nonlinear clipping noise

Machine Learning for Communication Blocks

□ Joint channel estimation and detection

□ MIMO detection using deep learning

Deep Learning for MIMO

MIMO Detection:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$

Goal: estimate **x** from received signal **y** and channel matrix **H**

Conventional Detectors:

- > Optimal detector: ML detector, optimal detector, high complexity
- Linear detectors: ZF,LMMSE, low complexity, poor performance
- Iterative detectors: AMP-based detection, EP-based detector, excellent performance, moderate complexity, performance degradation with ill-conditioned channel matrix

Motivation: deep learning improve performance of iterative detectors

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li "A model-driven deep learning approach for MIMO systems," submitted to *IEEE GlobalSIP'18*, Anaheim, CA, Dec. 2018.

OAMP-Net

Architecture

Math Iteration.

$$\mathbf{r}_{t} = \hat{\mathbf{x}}_{t} + \gamma_{t} \mathbf{W}_{t} (\mathbf{y} - \mathbf{H} \hat{\mathbf{x}}_{t}),$$

$$\hat{\mathbf{x}}_{t+1} = \mathbb{E} \{ \mathbf{x} | \mathbf{r}_{t}, \tau_{t} \},$$

$$v_{t}^{2} = \frac{\|\mathbf{y} - \mathbf{H} \hat{\mathbf{x}}_{t}\|_{2}^{2} - M\sigma^{2}}{\operatorname{tr}(\mathbf{H}^{T}\mathbf{H})},$$

$$\tau_{t}^{2} = \frac{1}{2N} \operatorname{tr}(\mathbf{C}_{t}\mathbf{C}_{t}^{T}) v_{t}^{2} + \frac{\theta_{t}^{2}\sigma^{2}}{4N} \operatorname{tr}(\mathbf{W}_{t}\mathbf{W}_{t}^{T}).$$

Trainable Variables (only two!): (γ_t, θ_t)

Similation Results

- > OAMP-Net outperform the OAMP algorithm and LMMSE-TISTA network
- > OAMP-Net obtain more performance gain under correlated channels
- Number of trainable variables is 2 *times of iteration number* and independent of the number of antennas *N* and *M*

End-to-End Learning based Communications

□ Background

- Transmitter learns to encode the transmitted data into x
- Receiver leans to recover the transmitted data based on y
 Challenges:
 - Channel transfer function is unknown
 - Channel is time-varying

□ Approaches:

- Reinforcement Learning
- Conditional GAN

H. Ye, G. Y. Li, B.-H. Juang, and K. Sivanesan, "Channel agnostic end-to-end learning based communication systems with conditional GAN," submitted to *IEEE Global Commun. Conf.*, Abu Dhabi, UAE, Dec. 2018.

E2E based on Reinforcement Learning

Reinforcement Learning Formation:

- Agent: transmitter
- Environment: channel and receiver
- States: source data
- Actions: transmit signals

□ Advantage and Disadvantage:

- Channel model is unnecessary
- Reinforcement learning for continuous action space is hard

E2E based on Conditional GAN

GAN:

- Generator: maps an input noise, **z**, to a sample
- Discriminator: maximizes the ability to distinguish between the two categories

Conditional GAN:

Both G and D are conditioned on some extra information, m

E2E based on Conditional GAN

- Conditional GAN: model the channel output distribution
- Surrogate of the real channel when training the transmitter
- Received pilots as a part of conditioning for time-varying channel

Simulation Results: AWGN Channels

Similar to AWGN with standard 16 QAM input

Simulation Results: Rayleigh Fading Channels

- Learn to generate samples with different instantaneous h
- Similar E2E result in coherent detection and joint detection and channel estimation

Conclusions and Future Topics

Conclusions:

- Learning for improving blocks in communication systems
- Learning for novel end-to-end communication archietecture

Future Directions:

- Deep learning based physical layer security
- Tradeoff between system performance and training efficiency
- Communication metric learning
- Open access real-world data sets

Thank you!

