Deep Learning
in Physical Layer Communications

Professor Geoffrey Ye Li
School of Electrical and Computer Engineering
Georgia Institute of Technology

Contributors: H. Ye, H.-T. He, and B.-H. Juang

f\ Georgia hsiftuie
| ofTechnologyy



Outline

e Motivation
e Wireless Systems with Block Structure

e End-to-End Wireless Systems

Georgia
Tech



Motivation

d Challenges in current communication systems

» Mathematical channel models versus practical channel imperfection
» Block structures versus global optimality

» Effective signal processing algorithms versus low costs
d Why deep learning?
» Data-driven method, no need for channel models

» End-to-end loss optimization for global optimality

» Concurrent architectures, suitable in fast-developing parallelized processing

architectures

Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” submitted
to IEEE Commun. Mag., July 2018.
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DNN

Output layer

Input layer
Input layer P y

» Neurons: nonlinear function of a weighted sum of the outputs of neurons
in preceding layers

» Minimize aloss function by adjusting the weight on training set

» Deep Neural Networks: with more than one layer
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Block Structure or End-to-End?
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Wireless Systems with Block Structure

 Joint channel estimation and detection

d MIMO detection using deep learning
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Joint Channel Estimation and Signal Detection
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Online deployment

Offline training

» Pilot OFDM block + data OFDM block

» Channel varying frame-to-frame, constant over pilot and data blocks

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection
in OFDM systems,” IEEE WCL, vol. 7, no. 1, pp. 114 - 117, Feb. 2018.

Georgla
Tech |



DNN Model Training
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Offline training

Simulation
Data

»Training to predict the transmit data
» Training with received OFDM samples generated under diverse channel conditions

»Optimizing parameters to minimize distance of model output and transmit data
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Impact of Pilot Number
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» Better than LS; comparable to MMSE

» Better than MMSE with 8 pilots Georgia
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Impact of Cycle Prefix
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» Conventional methods: error floor when SNR over 15 dB
» Deep learning method: robust to CP removal
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Impact of Clipping Noise
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» Clipping and filtering: reducing PAPR but introducing nonlinear noise

» Better than MMSE when SNR over 15dB Georgia
» More robust to the nonlinear clipping noise Tech 11



Machine Learning for Communication Blocks

(J Joint channel estimation and detection

d MIMO detection using deep learning
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Deep Learning for MIMO

LMIMO Detection:

y=Hx+n
J Goal: estimate x from received signal y and channel matrix H
 Conventional Detectors:
» Optimal detector: ML detector, optimal detector, high complexity
» Linear detectors: ZF,LMMSE, low complexity, poor performance

» Tterative detectors: AMP-based detection, EP-based detector, excellent performance, moderate

complexity, performance degradation with ill-conditioned channel matrix

dMotivation: deep learning improve performance of iterative detectors

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li “A model-driven deep learning approach for MIMO systems,”
submitted to IEEE GlobalSIP’18 , Anaheim, CA, Dec. 2018.
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OAMP-Net
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Similation Results
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» OAMP-Net outperform the OAMP algorithm and LMMSE-TISTA network
» OAMP-Net obtain more performance gain under correlated channels

» Number of trainable variables is 2 times of iteration number and independent of the number of
antennas N and M
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End-to-End Learning based Communications

O Background
» Transmitter learns to encode the transmitted data into x

> Receiver leans to recover the transmitted data based ony

d Challenges:

» Channel transfer function is unknown

» Channel is time-varying

Transmitter

_1) Channel y
p(ylx) i

O Approaches:

> Reinforcement Learning

» Conditional GAN

H. Ye, G. Y. Li, B.-H. Juang, and K. Sivanesan, “Channel agnostic end-to-end learning based
communication systems with conditional GAN,” submitted to IEEE Global Commun. Conf., Abu Dhabi,
UAE, Dec. 2018.
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E2E based on Reinforcement Learning
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U Reinforcement Learning Formation:
» Agent: transmitter

» Environment: channel and receiver
» States: source data

» Actions: transmit signals

0 Advantage and Disadvantage:
» Channel model is unnecessary

» Reinforcement learning for continuous action space is hard Georgia
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E2E based on Conditional GAN
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J GAN:

» Generator: maps an input noise, z, to a sample

» Discriminator: maximizes the ability to distinguish between the two categories

(] Conditional GAN:

» Both G and D are conditioned on some extra information, m -
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E2E based on Conditional GAN

Source

Conditional GAN

Received

d Transmitter Generator Receiver
ata | T &= data
Received Received
signals
. Received

— Transmit Data Flow / pilot signals

< — — Gradients Flow
» Conditional GAN: model the channel output distribution
» Surrogate of the real channel when training the transmitter
» Received pilots as a part of conditioning for time-varying channel
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Simulation Results: AWGN Channels

» Similar to AWGN with standard 16 QAM input

» Similar to hamming(7,4) with MLD ‘
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Simulation Results: Rayleigh Fading Channels
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Conclusions and Future Topics

L Conclusions:

» Learning for improving blocks in communication systems

» Learning for novel end-to-end communicaiton archietecture

J Future Directions:

» Deep learning based physical layer security
» Tradeoff between system performance and training efficiency
» Communication metric learning

» Open access real-world data sets
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Thank you!
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