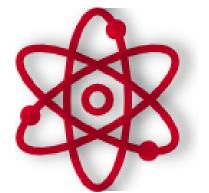


Quantum-Safe Security Relevance for Central Banks

June 2018

Outline

- ID-Quantique in short
- The quantum threat
- The solution: quantum-safe cryptography
 - Quantum key generation (QRNG)
 - Quantum Resistant Algorithms
 - Quantum Key Distribution (QKD)
- QKD use cases for Central Banks



Company Profile

Founded in 2001

Geneva, Switzerland Seoul, South Korea (SKT Invest.) Hangzhou, PRC (JV) Bristol, UK

- within 2 business units:
- Quantum-Safe Security
- Quantum Sensing

Performs R&D, production, professional services, integration, support

Clients: Governments / Banks / Gaming Industry / Universities / IT Security

By 4 quantum physicists from the University of Geneva Ŀ 60 employees in CH, including 30 engineers/scientists •••

Develops technologies and products based on quantum physics

The Quantum Threat

Quantum Computing: Opportunites & Threats

NEWS IN BRIEF QUANTUM PHYSICS

Google moves toward quantum supremacy with 72-qubit computer

SHARE ARTICLE

I UPGRADE Google's 72-qubit quantum chip (shown) could become the first to perfor calculation impossible for traditional computers.

Opportunities:

- Α

ECC...)

- Huge breakthroughs in quantum computing in recent years
- Massive investment in "quantum supremacy" by Google, Intel & IBM
- "Quantum supremacy can be comfortably demonstrated with 49 Qubits, a circuit depth exceeding 40, and a two qubit error below 0.5%" (Julian Kelly, Research Scientist, Quantum AI Lab, March 2018)

Large data set problems **Needle in Haystack problems**

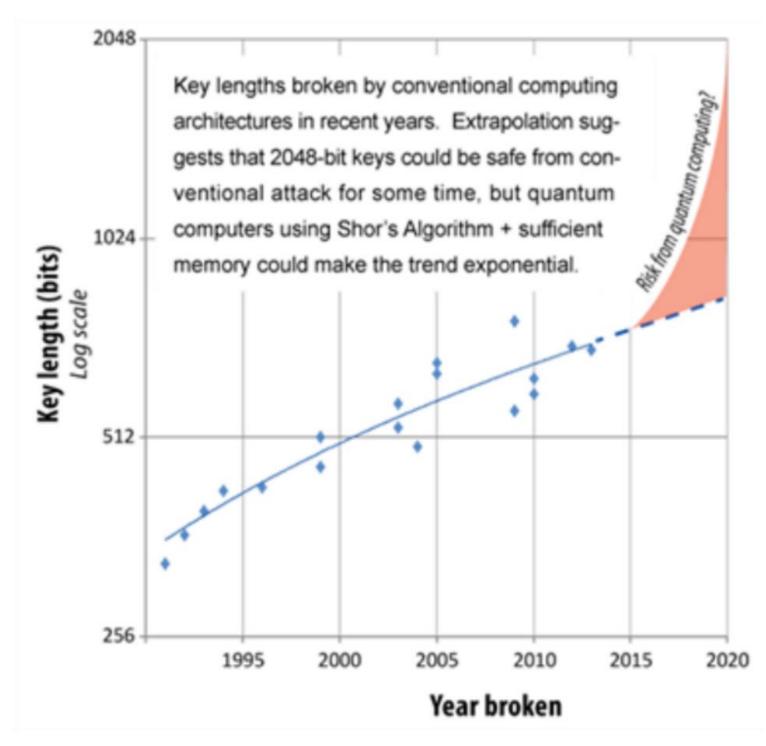
THREATS: break current public key cryptography (DSA, RSA,

SWISS

QUANTUM

- Computation with **Qubits**
- Main difference: build **coherent superposition** of states
- But a **measurement** always gives one of the two states only
- Behaves like a massively parallel computer
- Solves problems in much fewer steps

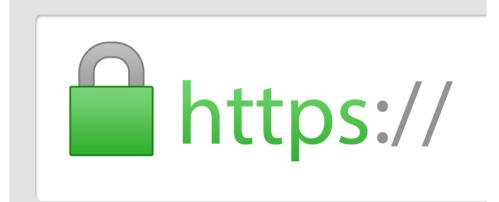
Timeline for the Quantum Computer


- Large-scale quantum computing is 10-15 years away
- 1 in 7 chance of crypto primitives being affected by quantum attacks in 2026
- 1 in 2 chance by 2031

Estimates by Prof. Michele Mosca Institute for Quantum Computing, University of Waterloo (at ETSI/IQC workshop 09/2017)

SWISS QUANTUM^D

s away ed by



Extract form ETSI White Paper No. 8 "Quantum Safe Cryptography and Security

Fast forward

TLS Protocol Insecure

Message Authentication forged

Digital Signature can be forged (and Blockchain)

Network Encryption Insecure

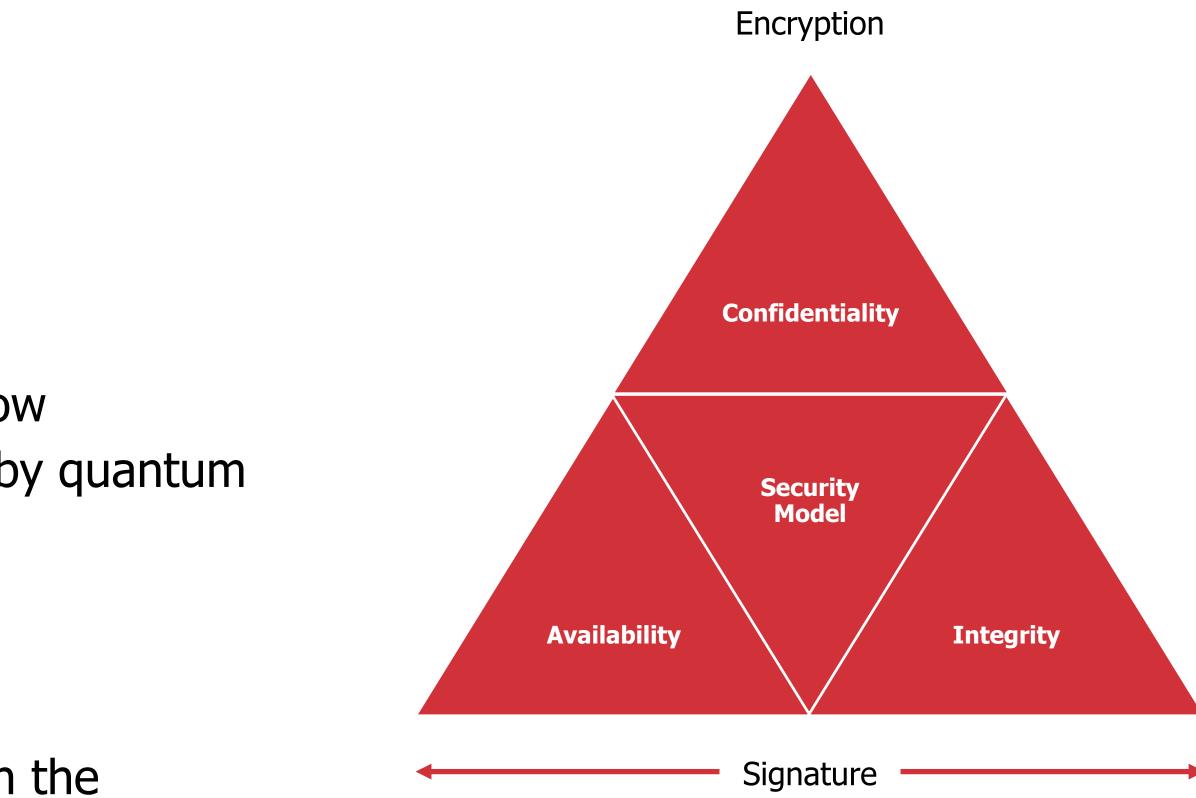
ID Quantique PROPRIETARY

Quantum Computing Brings a Paradigm Shift

Next generation of cryptographic infrastructure

- Must have quantum-safe alternatives
- Should have algorithmic agility built in
- Should be underpinned by strong keys

PKI – Trust Establishment: **Plan now!**


- Need "crypto-agile" or hybrid PKI solutions now
- Can re-sign shortly before the crypto broken by quantum computer

Data Confidentiality: Act now!

- Threat is "Download Now, Decrypt Later"
- The deadline to be Quantum-Safe depends on the information lifetime of your data

SWISS UANTUM

The Solution: Quantum-Safe Cryptography

SWISS JM₽

Quantum-Safe Transition

ETSI White Paper No. 8

Quantum Safe Cryptography and Security

An introduction, benefits, enablers and challenges

June 2015
June 2015

« Without quantum-safe encryption, everything that has been transmitted, or will ever be transmitted, over a network is vulnerable to eavesdropping and public disclosure »

NATIONAL SECURITY AGENCY						
			Defendi	ing Our		
HOME	ABOUT NSA	ACADEMIA	BUSINESS	CAREERS		
Information Assurance			Home > Information As			
About IA at NSA			Cryptography			
IA N IA E IA M IA A IA B ~ IA P Cor Class	Client and Partne lews Vents Nitigation Guidar Academic Outrea Business and Res Programs mmercial Solution ssified Program bal Information	nce ch search ons for	In the current globa our Nation, its citize standards are vital t ubiquitous need for Currently, Suite B cr Standards and Tech solutions approved f Below, we announce Background			
	bal Information	Grid	Backgro	nnd		
	nmercial Solutio ssified Program			e announce		
≁IA P	rograms			s and Tech approved f		
	usiness and Re	search				
	le an	noun	ce p	reiin		

"We announce preliminary plans for transitioning to quantum resistant algorithms to provide security against a potential quantum computer" - Aug. 2015

SWISS QUANTUM[®]

y Today

al environment, rapid and secure information sharing is important to protect ens and its interests. Strong cryptographic algorithms and secure protocol tools that contribute to our national security and help address the r secure, interoperable communications.

cryptographic algorithms are specified by the National Institute of chnology (NIST) and are used by NSA's Information Assurance Directorate in for protecting classified and unclassified National Security Systems (NSS). ce preliminary plans for transitioning to quantum resistant algorithms.

chnology (NIST) and are used by NSA's Information Assurance Directorate in for protecting classified and unclassified National Security Systems (NSS).

Call for Proposals

- NIST is calling for quantum-resistant cryptographic algorithms for new public-key crypto standards
 Digital signatures
- Encryption/key-establishment
- We see our role as managing a process of achieving community consensus in a transparent and timely manner
- We do not expect to "pick a winner"
 Ideally, several algorithms will emerge as 'good choices'
- We may pick one (or more) for standardization
 Only algorithms publicly submitted considered

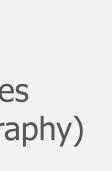
We may pick one (or more) for standardization
 Only algorithms publicly submitted considered

IDQ Recommended Path to Quantum Safety

Quantum Random Number Generation (QRNG)

- \checkmark Instantly strengthen your network encryption key material
- \checkmark Feed higher quality entropy into key generation servers, HSMs, Linux & crypto applications

Quantum Key Distribution (QKD)


State-of-the-art and Quantum-ready encryption

✓ Only go with AES-256 symmetric encryption and dedicated robust appliances Be **crypto-agile** & be **QKD ready** (ready to upgrade to quantum cryptography)

✓ Protect your investments for the next decade and further

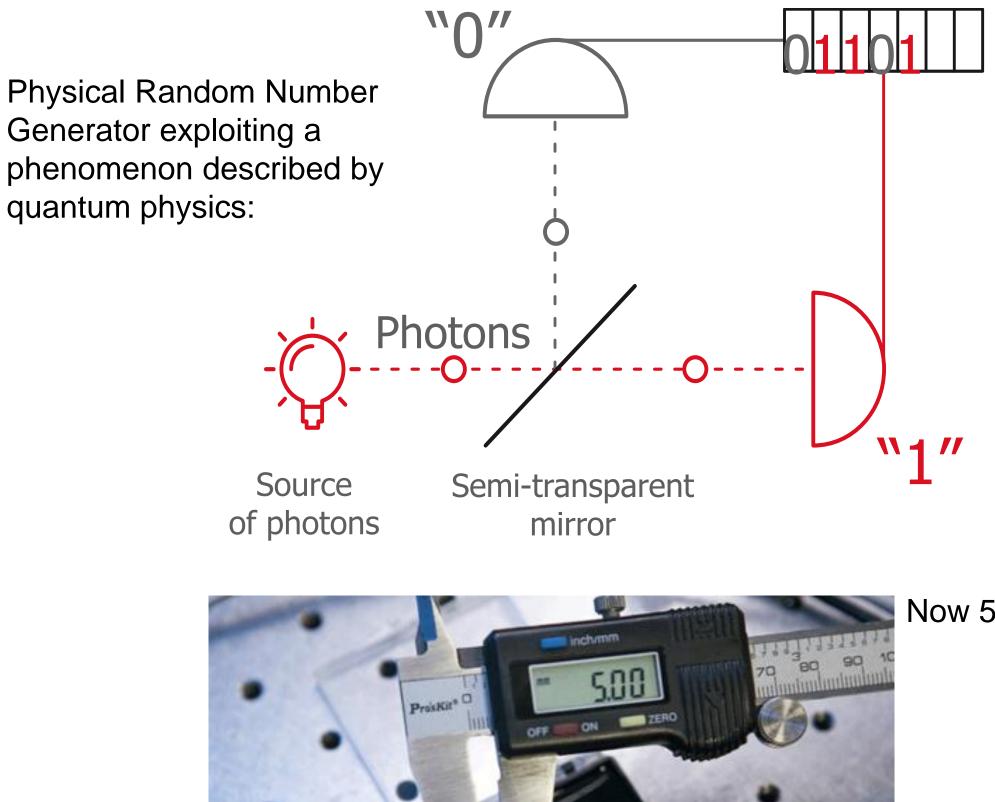
✓ Quantum-Safe Network Encryption or **Quantum Cryptography** ✓ Provide forward secrecy and anti-eavesdropping of the encryption keys \checkmark Ensure sovereignty and data ownership for the next decade (Post-Quantum era)

SWISS

DUANTUM®

THE TOOLS (1): QUANTUM KEY GENERATION

SWISS **JANTUM**



True Random Number Generator based on Quantum Physics

Advantages

- Speed
- Simple process that can be modelled influence of environment can be ruled out
- Live monitoring of elementary components possible to detect total failure
- Instant full entropy and provably random
- Compliance to various global standards
- NIST SP800-90A/B/C
- ISO/IEC-18031
- Performance: 1.5 Mbps (random bits per second)

SWISS JANTUM[®]

Now 5mm in size

QT-X

Certifications for Random Number Generators

- Quantis is a highly trusted and tested RNG
- **Quantis Certifications:**
 - NIST SP800-22 test suite compliance 0
 - Swiss METAS certification 0
 - **CTL** Certification 0
 - iTech Labs Certificate 0
 - BSI AIS31 compliance Ο

SWISS JM₽

• Poor quality of randomness (= predictability) means poor security for the applications using the random bits

Standards: ETSI ISG - QKD

Standards

Project

This project works closely with the ETSI Industry Specification Group on QKD - ETSI ISG-QKD

Partners IDQ, INRIM, NPL, PTB and TREL are members of the ETSI ISG-QKD, which is currently chaired by Andrew Shields of TREL.

MEETINGS

- Partners INRIM, NPL, and TREL participated in the 19th meeting of the ETSI ISG-QKD, which was hosted by Universidad Politécnica de Madrid in December 2015.
- · Partners INRIM, NPL, and TREL participated in the 20th meeting of the ETSI ISG-QKD, which was hosted by INRIM in June 2016
- Partners INRIM, NPL, and TREL participated in the 21st meeting of the ETSI ISG-QKD, which was hosted by AIT in December 2016
- Partners IDQ, INRIM, NPL and TREL participated in the 22nd meeting of the ETSI ISG-QKD, which was hosted by NPL in June 2017

Latest News

3 pilot comparisons completed on 27 October 2017

September 2017

Participation in ETSI ISG-QKD #22

Participation in ETSI ISG-QKD #21

Symposium – Assurance and Certification of Quantum Communication Technologies

The research within this EURAMET joint research project receives funding from the European Union's Horizon 2020 Research and Innovation Programme and the EMPIR Participating States.

SWISS QUANTUM

News Publications Presentations Training Standards Comparisons Partners - Contact

Search

3nd Project Review Meeting held at METAS on 5-6

Korea's SK Telecom and Deutsche Telekom have announced the formation of the Global Quantum Alliance at MWC 2017

THE TOOLS (2): QUANTUM RESISTANT ALGORITHMS

SWISS UM

Quantum-Resistant algorithms

Name of Cryptographic Algorithm	Type	Purpose	Resilience against Quantum Computer	
AES-256	Symmetric Key	Encryption	Ok but larger key sizes needed	High le
SHA-256, SHA-3		Hash function	Ok but larger output needed	High le confide
Lattice-based (NTRU)	Public Key	Encryption; signature	Believed	
Code-based (Mc Eliece)	Public Key	Encryption	Believed	Under
Multivariate polynomials	Public Key	Encryption; signature	Believed	investiga
Supersingular elliptic curve isogenies (SIDH)		Encryption; possibly signature	Believed	
ECDSA, ECDH (Elliptic Curve Crypto)	Public Key	Signatures, Key exchange	No longer secure	
RSA	Public Key	Signatures, Key establishment	No Longer secure	
DSA (Finite Field Crypto)	Public Key	Signatures	No Longer secure	

SWISS QUANTUM[®]

Timelines for NIST PQ Standards – Might be too slow!

Timeline

*This is a tentative timeline, provided for information, and subject to change.

Date					
Feb 24-26, 2016	NIST Presentation at PQCrypto 2016: Announcement and outline of NIST's Call for Submissions (Fall 2016), Dustin Moody				
April 28, 2016	NIST releases NISTIR 8105, Report on Post-Quantum Cryptography				
Dec 20, 2016	Formal Call for Proposals				
Nov 30, 2017	Deadline for submissions				
Dec 4, 2017	NIST Presentation at AsiaCrypt 2017: The Ship Has Sailed: The NIST Post-Quantum Crypto "Competition", Dustin Moody				
Dec 21, 2017	Round 1 algorithms announced (69 submissions accepted as "complete and proper")				
Apr 11, 2018	NIST Presentation at PQCrypto 2018: Let's Get Ready to Rumble - The NIST PQC "Competition", Dustin Moody				
April 11-13, 2018	First PQC Standardization Conference - Submitter's Presentations				
2018/2019	Round 2 begins				
August 2019 <i>(tentative)</i>	Second PQC Standardization Conference				
2020/2021	Round 3 begins or select algorithms				
2022/2024	Draft Standards Available				

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Workshops-and-Timeline

SWISS QUANTUM[®]

CONTACTS

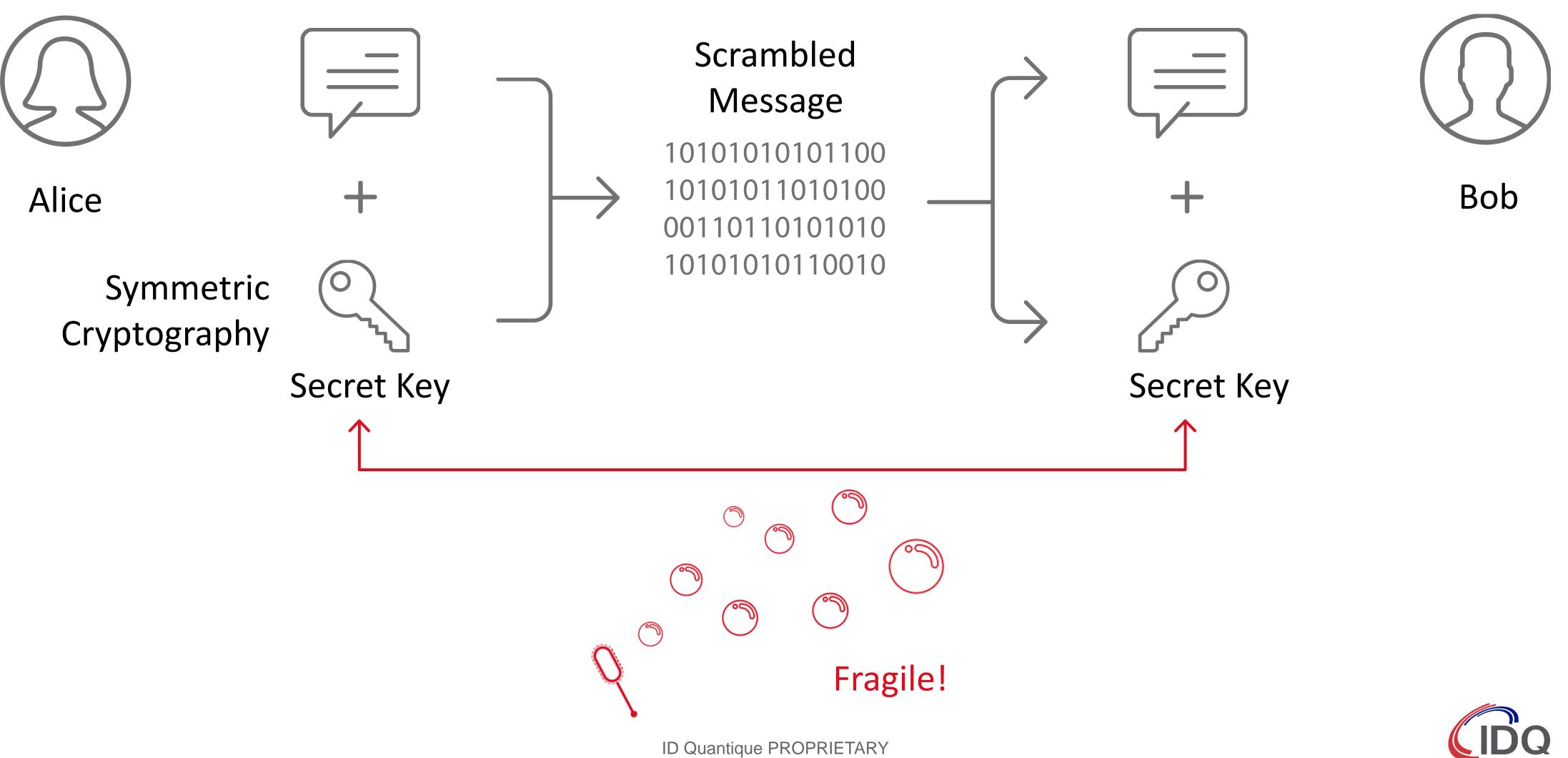
PQC Crypto Technical Inquiries

pqc-comments@nist.gov

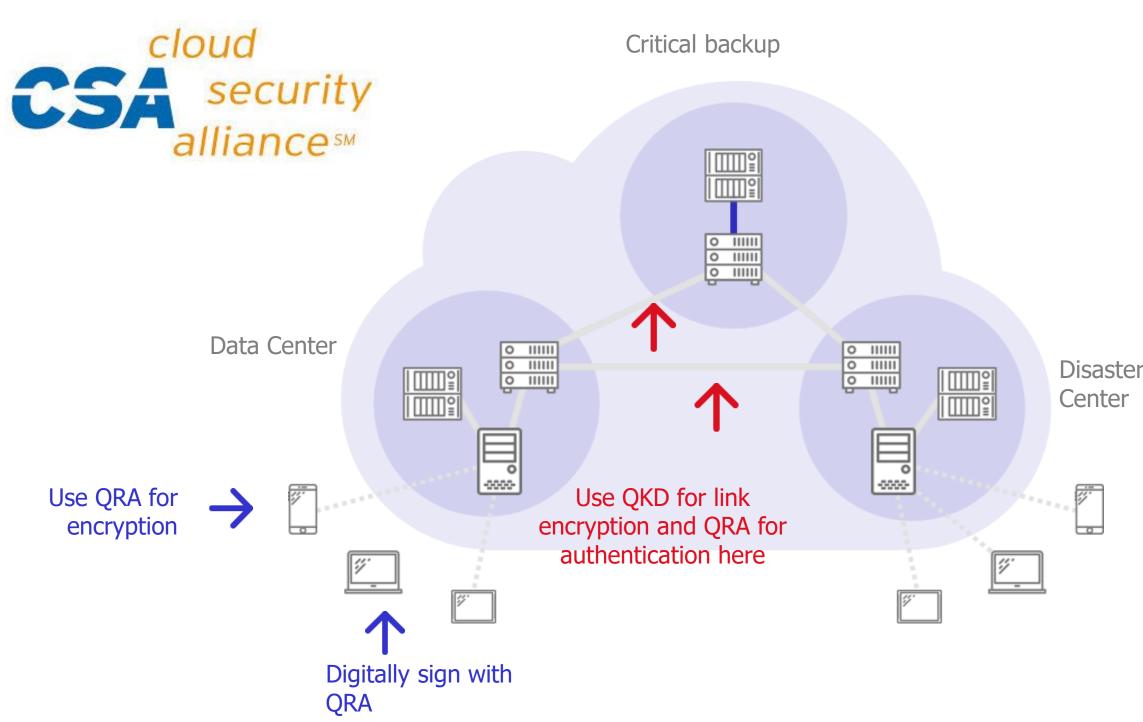
Dr. Lily Chen 301-975-6974

Dr. Dustin Moody 301-975-8136

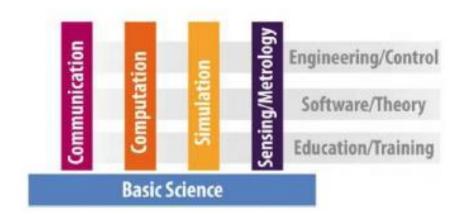
Dr. Yi-Kai Liu 301-975-6499


THE TOOLS (3): QUANTUM KEY DISTRIBUTION

SWISS **JANTUM**


Quantum Key Distribution (QKD): Basic Idea

SWISS **JANTUM**


CSA Recommendations & EU's QT Flaghship Agenda

- The links between data centres and users are protected by **QRA** for encryption and signature
- **QKD** is used for specific and critical links, for example between data centers and DRC, and for all links where long term privacy is a requirement

QT Flagship Ramp-up Phase

- > During the QT-Flagship's ramp-up phase, the aim is to build a strongly networked European QT community around the goals defined in the first version of the Flagship's Strategic <u>Research Agenda</u> under the following topics:
- **Disaster Recovery**
- a) Q-communication
- b) Q-computing
- c) Q-simulation
- d) Q-metrology/sensing
- e) Q-fundamental science

Call opened on 31/10/2017, closes on 20/02/2018

Commissione europea

QKD USE CASES

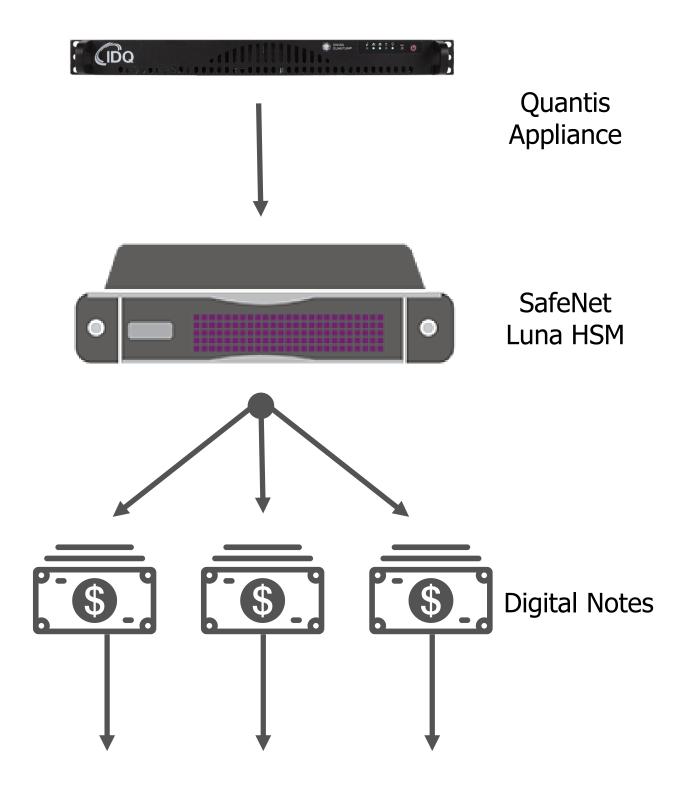
Digital Trust Platform

Digital money generation for central bank

Business need

- Development of digital fiat currency for central bank Ο
 - Secure architecture design & implementation
 - Crypto customisation & agility -

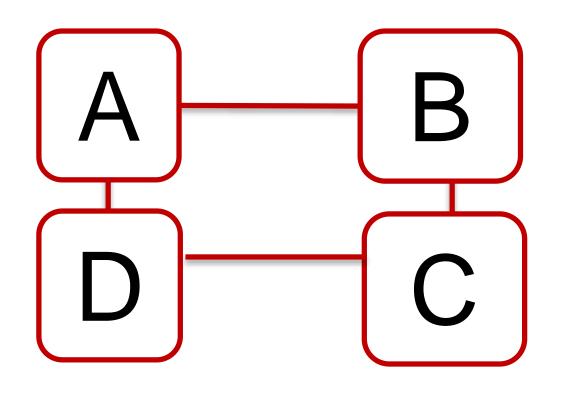
Solution


- Digital bank note generation platform producing authenticated 0 validated digital tokens with assigned monetary value
- Quantis QRNG appliance feeds entropy into SafeNet (Gemalto) 0 hardware security module for higher security of token generation and authentication
- Customised authentication based on bespoke (non NIST) elliptic 0 curves (developed with Uni Trento & implemented on HSM)

Benefit

Credibility of innovative solution based on Swiss trust and security

SWISS TUM®



Q4 2018: National Bank Testbed for MAN

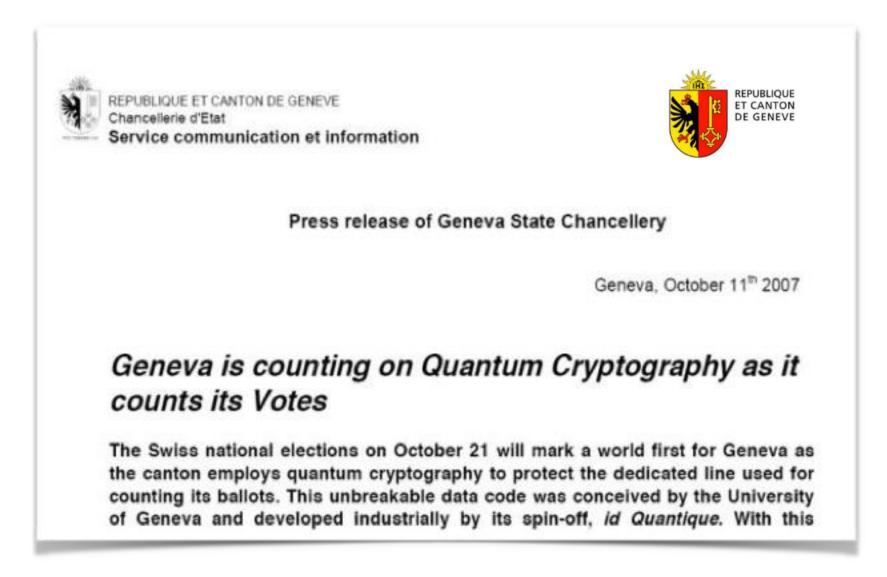
4 nodes Metro Area Network

- IDQ commercial Cerberis QKD Blade with Adva FSP 3000
 - Option 1: WDM for metro area network with 40 data channels (tested in 2016) Ο
 - Option 2: 20 bidirectional data channels on one fibre & quantum keys on 2nd fibre Ο (planned Q4 2017)
- Full scale implementation: Ring topology with full redundancy

SWISS JM

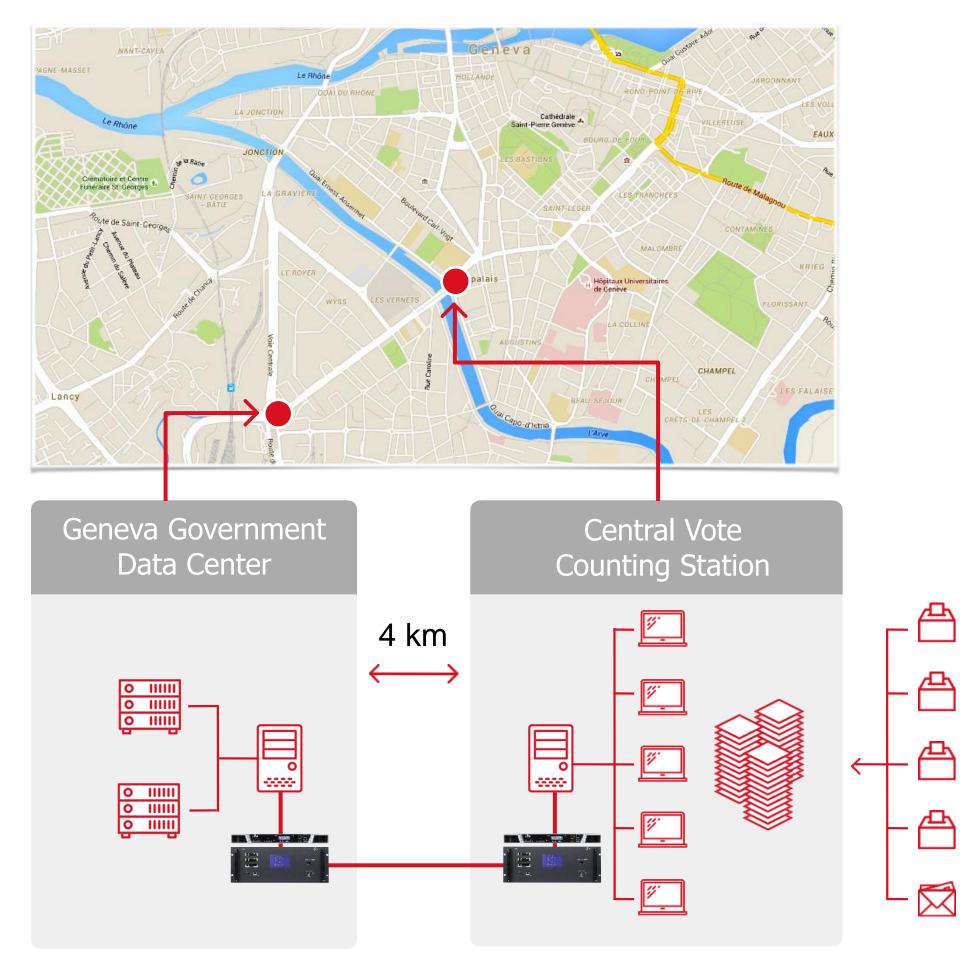
Adva FSP 3000

Long Distance QKD with Trusted Nodes


SWISS **QUANTUM**

The quantum-secured link runs across a standard fibre connection through multiple BT exchanges over a distance of 120km, making it the first high-speed 'real-world' deployment of quantum-based network security in the UK. The network link, which is capable of transferring 500Cbps of data, will explore and validate use cases for Quantum Key Distribution (QKD) technologies. This will include how the technology can be deployed to secure critical national infrastructure, as well as to protect the transfer of critical data, such as sensitive medical and financial information.

Example: First QKD Deployment


Practical QKD in Government & Public Administration

- In 2007 Geneva government installed QKD
- Confidentiality & integrity of data during federal & cantonal elections

SWISS QUANTUM

Downtown Geneva

Cerberis QKD Solution

ID Quantique PROPRIETARY

Mail Votes

Ballots

For more information http://www.idquantique.com/ olivier.pfeiffer@idquantique.com

SWISS **QUANTUM**

ID Quantique PROPRIETARY

