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Today’s Al systems

Today’s Al has “superhuman” performance

Most success in image & nlp domain

Key ingredients for the success:
- Huge amounts of training data
- Very deep (black-box) models

- Incredible computing power
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Can we also expect such a revolution in ICT ?

Yes, but ...



ICT settings are slightly different

data often distributed
Key ingredients for the success: / —> distributed learning

- Huge amounts of training data

- Very deep (black-box) models » using black-boxes not an option

—> interpretable learning

- Incredible computing power

not available (e.g. mobile devices)
—> efficient learning
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Efficient Deep Learning



DNNs are large and energy hungry
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DNN with Millions of weight parameters
- large size

- energy-hungry training & inference

- many floating point operations
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For instance, VGG16

16 weight layers

138 000 000 parameters
553 MB (uncompressed)
30940 M float operations (sum-+mult) for inference

—> 71 mJ just for the float operations on 45nm CMOS process

I'T convolution+ ReLLT

max pooling
fully connected+HelU

softmax

(Source: http://www.cs.toronto.edu/~frossard/post/vgg16/)
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DNNs are large and energy hungry

What can we do to bring deep learning to ICT ?

1. Design optimized hardware

A new MIT computer chip could allow your

Qualcomm's deep learning SDK will mean more Al on
smartphone to do complex Al tasks

your smartphone

. . . . . Energy-friendly chip can perform powerful artificial-
Chip could bring deep learning to mobile devices | :ciigence tasks

2. Reduce the complexity of the DNN
Popular research topic ...
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Reducing the complexity of DNNs

1. Network Pruning » 2. Weight Quantization
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pruning

neurons

3. Efficient Encoding
Sparse data format W :[4,4,4,2,4,4,2,2,2,2,2,4,4,4,4,4,2,4,2,2]

- reduces storage coll :[1,5,7,1,2,5,6,8,0,1,7,2,3,7,9,0,4,7,8,9]
- fast multiplications rowPtr :[0,3,8,11, 15, 20]
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But are compressed DNNSs really sparse ?

Quantization leads to low entropy weight
matrices with weight sharing property.

For such matrices, sparse formats may not
be the most efficient ones.

Weight sharing property: Subsets of connections share the same weight value.
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New efficient format for compressed DNNs
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0 04400040 4
4 0 00 2 0 0 4 2 2

more efficient encoding
of low entropy matrices

7 :[4,2]
coll :[1,5,7,2,5,1,6,8,0,1,7,2,3,7,9,0,7,4,8,9]
wl : [0.0, 1,1,0,0,1]
wPtr :[0,3,5,8,11,15,17, 20]
rowPtr [() 1 3,4,5,7]

VGG-16
size: 553 MB, acc: 68.73 %,
ops: 30940 M, energy: 71 mJ

Compression + sparse format
size: 17.8 MB, acc: 68.83 %,
ops: 10081 M, energy: 22 mJ

Compression + Our format
size: 12.8 MB, acc: 68.83 %,
ops: 7225 M, energy: 16 mJ
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Distributed Deep Learning



Distributed Training

Our goal

- train a model without sending Al Server
client data to the server

- minimize communication
overhead

Mobile Mobile Mobile Mobile
Client Client Client Client

@ @ @ o
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Distributed Training

Training algorithm
1. Initialize all clients with the same W

2. Compute weight updates AW locally iterate

Top-1 Error of ResNet-50 on ImageNet Dataset

and send them to the server 100

= Baseline
— Gradient Dropping
—Deep Gradient Compression

3. Update W and send it to the clients

80

60

It even works if gradient is highly sparsified (99.9 %)
(see Lin et al. 2018)

Top-1 Error

401

We have very promising extension of this approach.
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Interpretable Deep Learning



Can we trust these black boxes ?

prediction f(x)

verity understand

system legal weaknesses
aspects learn new

strategies
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Can we trust these black boxes ?

Is the way error Is measured Are we measuring the
a satisfying specification of the error on the true data
problem? distribution?

min [ 1£00 - yIPde(x.)
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Can we trust these black boxes ?

Idea: Decompose function

- : > iR, = f(z) :
Explain prediction S R R AR R SR '
(how much each pixel contributes to prediction)

heatmap

==
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Opening the black box

Test error for various classes:

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 35.48% 72.71% 86.30%
cat chair cow diningtable dog / horse \ motorbike

Fisher 59.92% 51.92% 47.60% 58.06% 42.28% 80.45% 69.34%

DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% W_81.60% 4 79.33%
person pottedplant sheep sofa train tvmonitor mAP

Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%

DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%

(Lapuschkin et al., 2016)
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Upcoming tutorials on interpretability

) S MI%

CVPR 2018
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Thank you for your attention

Questions ?7?7?

Contact Information:

Wojciech Samek

Fraunhofer HHI, Machine Learning Group
Einsteinufer 37, 10587 Berlin, Germany
Mail: wojciech.samek@hhi.fraunhofer.de

More information: http://iphome.hhi.de/samek
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