Artificial Intelligence Enables a Network Revolution

April 25, 2018

Network Technology Research Institute, China Unicom

Artificial Intelligence Enables a Network Revolution

Part 1

AI application in operators

Several Viewpoints on Artificial Intelligence

The third wave of AI

Deep learning proposed
Big data era coming
Computing power increased

AI enables the fourth industrial revolution

Goal：Intelligentization of Industrial Production，Intelligent Control， Intelligent Machines
Representative Technology：Artificial Intelligence

Weak AI，Strong AI and Super AI

Weak AI，NOW

Strong AI， 2040
Super AI， 2060

AI＋all walks of life

Important direction for digital transformation in all walks of life
Deeply affect retail，finance，transportation， manufacturing，medical，security，education， and telecom industries

Global Operators Applying AI Technology

China

－AI engine developed with Honda
－ 50% of network operators optimized， 2019
－ 1000 days
－The fourth platform named ＂Cognitive Power＂
－Voice recognition customer service system＂Aura＂

Artificial Intelligence Enables a Network Revolution

Part 2

AI enables network revolution

Challenges on the Telecom Industry（1／2）

Chinga

\checkmark Mass growth of devices

In 2020，global IOT devices will grew to 50 billion， 6 times more than the devices in 2011.
\checkmark Mass growth of data

In 2020，global mobile data traffic generated 35 EB per month．
In 2020 ，global data amount to $40 \mathrm{ZB}, 50$ times more than the data in 2011

Challenges on the Telecom Industry（2／2）

\checkmark Mass growth of network complexity

	Traditional network architecture	SDN／NFV Automatically Orchestrated and Managed
The Trend of Network Architecture Evolution	－Separation of control and data planes（SDN） －Virtualization（NFV） －Cloudification	－Openness and programmability －Service diversity，diverse traffic requirements （eg．MANO） －Full end to end automation of network and service management（eg．Zero－Touch Operations）

Network Intelligentization is Imperative

\square AI could analyze massive data by heterogeneous computing and edge computing．AI could adaptively adjust and optimize network connections by combining optimal strategy learning algorithms such as reinforcement learning with SDN technology．AI could realize fully end to end automated network architecture by semantic understanding and auto－optimized technology．
\square The challenges mentioned above are also the advantages of realizing network intelligentization．

Network Intelligentization

Artificial Intelligence Enables a Network Revolution

Part 3

The road of China Unicom network intelligentization

China Unicom Intelligent Network Logical Framework

China Unicom Vision of AI Application in Network

AI＋network planning
2020：30\％utilization

AI＋network design 2020： 30% utilization

AI＋network construction
2020： 40% utilization

AI＋network optimization 2020： 40% utilization

AI＋network maintanence 2020：60\％utilization

AI＋network security 2020：70\％utilization

AI\＆5G network 2020：AI－enabled Mobile Edge Computing

China Unicom Network Intelligent Application（1／2）

Business intelligent recommendation capability

Spam SMS intelligent diagnosis

Customer churn prediction model

Intelligent network optimization virtual testing

MR Intelligent
positioning and analysis

NPS derogate prediction model

> Realized network intelligent application

Automated debug scenario self－learning

Alarm Association Rule Machine Learning Model
Content based charging correlation model

IPTV user behavior and defect analysis

Video stalling automated problem locating

Customer resident location model

China Unicom Network Intelligent Application（2／2）

SOC situation awareness

Devices management based on image identification or NLP

Multi－technology network fault tracing analysis based on network topology

Artificial Intelligence Enables a Network Revolution

Part 4

Case study

Case Analysis：AI applied in Roots－tracing of Network Alarm $_{\text {chino }}$

Research Background

$>$ Amounts of device alarms of UTN：UTN is the local integrated carrier transmission network of China Unicom．UTN is mainly used for 3G／4G mobile service，and VIP customer service，and UTN uses IP／MPLS dynamic protocol． Compared with the traditional network，the protocol used by UTN is relatively complex，and the logical connection of the network is complicated．Compared with the traditional network management system，the UTN network system receives a large number of device alarms，many of which are caused by the root alarm．
$>$ The current processing method：For the alarms，the current method is to solve the alarms depending on the expert experience，which means transforming the expert experiences into rules，and filter out the non－critical alarm through the rules．The downside of this approach is that in order to avoid filtering out the important alarms，the filter rules are relatively relaxed，which means the rules have limited filtering ability．
$>$ It is hoped that applying AI to trace the root alarm can form a more efficient solution．
Research Objective
－Look for the rules with higher filtering capabilities
\square Compress alarms to get the valuable ones
\square Get the alarms collection that contains the root alarm

Step One：Data preparation
－Identifying frequent alarms

Step Two：Correlation rules mining
－Improving PreFixSpan algorithm

Step Three：Alarm correlation rules confirming and storing
－Correlation rules
Blacklist
Step Four：Root alarm identification
－Labelling alarms

Data Preparation

 ］

THe

Oniti

D）

］

$>$ Problems and Analysis
Many alarms being discovered are frequently reported continuously at the same time or in a continuous period of time，such as alarm of link down． When the data is analyzed，it will only lead to the rule of＂Link down－＞Link down＂．Such a rule is not a reflection of the derivative relationship．

\checkmark Solution

Compressing the same alarm on the same port for a period of time to be only one alarm．Others are marked as filterable alarms．

Correlation Rule Mining

Improved PreFixspan Algorithm

＞Problems and Analysis

It was found that the rules obtained by the classic PreFixSpan algorithm do not have the corresponding trigger conditions in the early stage of the study，leading experts unable to determine the validity of the rules．

For example，there are two frequent item sets candidate objects：［A－＞B，constraints H1］ （a），and［A－＞B ，constraints H2］（b）

When the probability of $(a+b)$ occurrence exceeds the confidence interval，it will be recognized as one rule $[\mathrm{A}->\mathrm{B}$ ］

\checkmark Solution

Improving the PreFixSpan algorithm，the same alarms with different trigger conditions do not appear to be considered as one rule，but two．
Fig． 3 Interface of data mining process

Current Results

Amount of Data	1135817	Time of Data	30 days	Total number of nodes	2681
Total number of links	3881	Numbers of rules before modification	78	Effective rules	Unable to Judge
Numbers of rules after modification	179	Effective rules	148	Total rules of Industry standard and manufacturer	61
Derivative alarm ／Amount alarm （rules of data mining）	19%	Derivative alarm ／Amount alarm （rules of standard and manufacturer）			
Total percentage of filtered by rules and frequent alarm recognition		40%			

Further Optimization Methods and Work

\checkmark Analyzing the time parameter in the frequent alarm model；
\checkmark Modifying alarm identification to simulate online mode；
\checkmark Analyzing the similarities and differences between the alarm rules of different equipment manufacturers in different regions；
$>$ Improving the algorithm according to the rules；
$>$ Adding VM network topology to display the related information of alarms ，including the parameter of alarms，the performance parameter of network element ，the correlation of other alarms
$>$ Researching the method to deploy this system into existing network．

THANK YOU!

Network Technology Research
Institute, China Unicom
kfb@dimpt.com

Bing Ming Huang
huangbm7@chinaunicom. cn

