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Revolutionary Leap of Tactile Internet

Connecting machines into control loops at humanoid reaction times of

milliseconds and less

Source: ITU TechWatch Report: The Tactile Internet
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Ultra-reliable and low 
latency mobile 
communications (URLLC)

Massive machine type 
communications 

(eMTC & NB-IoT)

Enhanced mobile 
broadband (eMBB)
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 Higher density 

 New small cell architectures

 Higher spectral efficiency

 Massive MIMO (M-MIMO)

More bandwidth

 Millimeter wave technologies
Spectrum extension

Spectral efficiency increaseCell densification

New architecture for 

mobile infrastructure

Mechanisms for Performance Enhancements

	
context-aware operation

Control data plane split
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 Several possible bands 

between 26 and 80 GHz

 Advantages:

 Large bandwidth

 Mobile M-MIMO

 Inherent security

 Challenges:

 High attenuation 

 Short coherence time

 Baseband processing

5G Technology Enablers – Massive MIMO 

Analog Digital Array Processing Transceiver (ADAPT)

• Analog Beamforming to track large-scale channel characteristics (AoD, AoA of dominant paths)

• Digital MIMO processing on the effective channel given analog beamforming
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Channel
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RF Receiver
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mmWave
Massive 

MIMO

Large array in small form factor makes massive MIMO practical

Extend range & increase spatial DoF makes mmWave mobile

A Match made in Heaven

8

Source: A Straight Path towards 5G, Talk 3GPP RAN Workshop on 5G, Phoenix Arizona, Sept. 2015

mmWave & M-MIMO: A Match Made in Heaven
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 Potential solution for 

production cells or 

distributed industrial plants

 Point to multi-point 

networking with directional 

transmission

 large bandwidth, low latency

 low interference to 

neighbouring systems

 Higher immunity to jamming 

and eavesdropping

mmW Radio for Indsutrial Communication

© Bosch
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© Intel

 Broadband data 

exchange between 

adjacent vehicles

 Application e.g. for 

platooning

 Low latency

 Low interference and 

high immunity to 

interference

 "Stand Alone" or "Non 

Stand Alone" in 

combination with 5G

mmW Radio for V2X Communication
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What do we expect from ML?

• to help to cope with the massively increased complexity

diminish mismatch between model and reality

facilitating dense small-cell architecture

• to enhance efficiency and robustness (e.g. by reducing the 

number of measurements and facilitating robust decisions)

enabling massive MIMO and mmWave

• to make self-organizing feasible

cognitive network management

• to provide robust predictions

pro-active strategies, enhance outdated information

• To provide hardware friendly, flexible and cost-

effective approximations for complex models
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What are the challenges?

• High mobility  

 changes in network topology

 wireless links exhibit ephemeral and dynamic nature

• Noisy capacity-limited transmission exposed to interference

 wireless channel is error-prone and highly unreliable

• Stringent requirements of many 5G applications

 Massive access

 High reliability

 Low-latency implementation

• Data is distributed at different locations

• Models, context information and expert knowledge are available

• There is a lot of structure in the channel, signals and functions
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Massive or not massive? Does it matter?

Yes, it is essential whether you serve

• 100 devices at 1Mbps each or 

• 10000 devices at 10 kbps each!

As the system uncertainty grows fast with # devices!

• # unknowns increases dramatically

 High protocol overhead for channel estimation, 

synchronization, user activity detection etc. 



Slawomir Stanczak

What about Reliability?

It makes a huge difference if you have to provide

• 100 Mbs 90% of the time or 

• 100 kbps 99.9999999% of the time!

In the high reliability regime, the system performance is 

very sensitive with respect to unknowns

Mobile networks are full of both known unknowns and 

unknown unknowns
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Reconstruction of Radio/Knowledge Maps

KPI analysis

• Assess the implications of changes of control parameters on KPIs

• Detect abnormal or highly suboptimal states

Robust Prediction of KPIs

• Forecast KPIs as a function of control parameters or other information 

about the network (day of the week, etc.)

• Feature selection by robust dimensionality reduction

• Load prediction

• Relations among KPIs (e.g. new causality techniques)

• Anomaly detection (e.g. emergency detection in networks)

Framework for abstracting and sharing big data from infrastructures/hybrid 

clouds network/services/users enabling new services and businesses 

Network Analytics
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Madrid Scenario

• Madrid grid environmental model (METIS)
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• Pathloss map: adaptive projected sparse-aware multi-kernel 

approach, tensor completion (regularized approx. of rank minimization)

• Traffic map: Gaussian processes, Quantile estimation, context 

information

• Load estimation: hybrid-driven methods

Kasparick M., R. L. G. Cavalcante, S. Valentin, S. Stanczak, and M. Yukawa, "Kernel-Based Adaptive 

Online Reconstruction of Coverage Maps with Side Information," IEEE Transactions on Vehicular

Technology, vol. 65, no. 7, pp. 5461-5473, July 2016

Learning Capacity Maps: Key Ingredients
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• The rate-load mapping has a rich 

structure (e.g., monotonicity) that is 

hard to exploit in typical machine 

learning tools

• New hybrid-driven methods: more 

robust and optimal, in a well-defined 

sense, in uncertain environments 

Madrid Scenario: Learning Load Maps

D. A. Awan, R. L. G. Cavalcante, and S. Stanczak, ``A robust machine learning method for cell-load

approximation in wireless networks,´´ arXiv:1710.09318, 2017

Objective: Given a power allocation for cells and the traffic demand for 

users, what is the load at each cell (fraction of the used resources)?

Challenge: The mapping relating rate to load is highly dynamic and 

nonlinear owing to the interference  training must be short
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SON Optimization
Load-dependent network configuration

KPI AnalysisAnomaly detection, fault diagnosis, 

troubleshooting

Traffic prediction

Network Clustering

Network Planning and Optimization
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What is still missing?

• Robust online ML with good tracking capabilities 

 ML with small data sets and under latency constraints

• Exploitation of structures in signals and channels

 Dictionary learning

• Exploitation of context information and expert knowledge

 Hybrid-driven ML approaches

• Distributed learning for efficient usage of scarce resources

• New architectures for Big Data analytics

• Low-complexity, low-latency ML solutions (training networks 

still requires lots of resources)
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Optimal Neural Network for Sparse Recovery

• Compression: Linear dim. Reduction&quantization

• Recovery: non-linear estimator

• Need methods to chose architecture automatically

• Only require fine-tuning  Very fast and robust

S. Limmer and S. Stanczak, “Optimal deep neural networks for sparse recovery via Laplace techniques“, 

Preprint available at arXiv, Sept. 2017 
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Cooperative Deep Learning

1) Record multiview Images 2) Transmit compressed
decisions

3) Fusion to recover original
function (e.g. ‘Beethoven’)

Setup: (currently 2x Jetson TX2 + PC Receiver)

Objectives (e.g. for industrial applications):
• High compression -> low latency
• Support different function: max, arith. mean, median, svm classifier
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Conclusions

• Machine learning and mobile communications can be a 

match made in heaven!

• But there is a strong need for new ML methods 

- Learn feature insensitive to frequency bands, hardware 

implementation, signal phase …

• Hybrid-driven distributed machine learning

- Robust online learning with good tracking capabilities

- Distributed learning 

- Exploitation of structures, context and expert knowledge
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FDD Massive MIMO Channel Estimation

• Downlink and uplink use different frequencies (channels are different)

• It is easier to perform uplink measurements (massive MIMO regime) 

• Problem: 

- Learn downlink covariance matrix

- Reduce the number of measurements 

- Downlink measurements in the massive MIMO regime

Scatterers 

Scatterers 

Scatterers 

User trajectory

Base station (BS) 

with M antenna elements

Moble user (UE)
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• Uplink measurement (no noise):

- UE transmits a pilot that is used by BS to estimate the channel vector 

FDD Massive MIMO Channel Estimation

Scatterers

Scatterers 

Scatterers 

Scatterers 

Scatterers 

Scatterers 

Scatterers 

Scatterers 

Scatterers 



Slawomir Stanczak

2
3

• Traditional ML approach: Neural Network (NN)

• Training phase based on uplink and downlink measurements

• After the training phase, the DNN is used for the estimation

FDD Massive MIMO Channel Estimation

Neural network
Uplink 

sample 

covariance 

matrix

Post-processing

Estimation of 

the downlink 

covariance 

matrix
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Principal subspace distance (N = 20, SNR = [15:30]dB, 1000 samples)

Algorithm 1 Algorithm 2 Riemann NN
10-2

10-1

100

101

No downlink

measurements!
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FDD Massive MIMO Channel Estimation

A. Decurninge, M. Guillaud, and D.T.M. Slock, “Channel covariance estimation in massive 

MIMO frequency division duplex systems,” in IEEE Globecom, 2015

L. Miretti, R.L.G. Cavalcante and S. Stanczak, „FDD Massive Channel Spatial Covariance

Using Projection Methods, Preprint, Oct. 2017
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• Optimal solution requires solving combinatorial problem

• Recovery problems in communications require fast solutions (~1ms)

• Existing approaches are not suitable for low-latency applications 

• Methods for transmission and compression of sparse decision vectors

• Recover sparse vector      from (noisy) dimension reduced 

Problem: Transmission of sparse decisions
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Mathematics of (Deep) Neural Networks

Affine linear maps Nonlinear functions (rectifier)

• Neural networks can approximate any function (Barron93, ‘Universal Ap

proximation bounds’)

• Training networks requires lots of resources (nonconvex optimization)

Source: M. Peemen et al., Speed Sign Detection and Recognition by Convolutional Neural Networks. 2011
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Optimal Neural Network for Sparse Recovery

• Example: The conditional MMSE estimator is 

a polytope centroid  under certain conditions. 

• The problem reduces to:

• Volume and moment computation

• Implementable using the DL architecture

Synthetic data Real data

S. Limmer and S. Stanczak, “Optimal deep neural networks for sparse recovery via Laplace techniques“, 

Preprint available at arXiv, Sept. 2017 


