Use cases and requirements of network intelligence

Yong-Geun Hong (ETRI) January 29. 2018

Agenda

- Introduction
- Network Intelligence
- Use cases of Network Intelligence
- Requirements of Network Intelligence
- Conclusions

Introduction (1/2)

Development of IoE Network Architecture

Introduction (2/2)

Knowledge-converged Super-Brain (KSB) Project in ETRI

- 1 Monitoring and Data collection 2 Data refinement 3 Machine learning and Knowledge extraction
 - 4 Inference and optimization 5 Provision of Services

Network Intelligence (1/3)

Paradigm shift of network

Traditional Network Primary Data Center Primary Data Center Internet Primary Data Center Internet Fouter with Firewall Module Frewall Module Frewall Module Frewall Module Frewall Module Frewall Module

Network Intelligence (2/3)

Network Intelligence (3/3)

Use case 1 - Information-Centric Intelligent Edge (1/3)

Challenges for 5G

- Information-centric approaches
 - Video as VR (Virtual Reality) and AR (Augmented Reality) is a source of massive network traffic
 - Up to 20 billion IoT devices will be required to transfer enormous data volumes
- Mobility management
 - Low latency (1 msec) support for Mobility
 - anchorless mobility management for scalability
- Enabling Al
 - Optimization of network performance for multi-network connectivity, network efficiency, cost per bit, energy consumption
 - Consolidation of service deployment, policy control, resource management, network monitoring and analysis and prediction

Design of Information-centric Intelligent Edge

- Information-centric Edge for dynamic data cache/storage via analysis of user, service requests
- Information-centric Mobility management via analysis of user service types
 - User mobility and producer (data) mobility support
- Inheritance of advantages of ICN
 - Location-independent name, Data integrity (security), simple communication model (stateless), innetwork cache, etc.

Use case 1 - Information-Centric Intelligent Edge (2/3)

- Intelligent data cache/storage
 - On-demand cache: user requests for Live streaming
 - Prefetching cache: IoT sensing data
 - Intelligent cache: opportunistic cache via ML classifications of user's requests and producing data types

	① Cloud		② Basic ICN		③ Intelligent Edge	
	Light	Heavy	Light	Heavy	Light	Heavy
Time to acquire data	1221 msec	-	56 msec	786 msec	28 msec	30 msec
Ratio of packet loss	0%	-	0%	42%	0%	0%

Use case 1 - Information-Centric Intelligent Edge (3/3)

Steady state in intra-mobility

Streaming in inter-mobility

- Mobility management enabled with AI
 - Distributed anchor (edge) based mobility management
 - Edge state management at network
 - Intelligent storage model enabled with ML traffic classifications of user's service types
 - Dynamic cache: IoT data, On-demand video
 - Transparency mode: Live streaming without cache

Use cases 2 — ML-based Traffic Classifier (1/3)

- Purpose
 - Continuously collect traffic data
 - Build traffic classifier model based on collected data and classify
 - Periodically update the generated model
- Key functions of traffic classifier
 - Machine learning model for traffic classier
 - Traffic data miner
 - On-line Data Learner & Classifier
 - Web-based monitoring tools

Use cases 2 — ML-based Traffic Classifier (2/3)

Use cases 2 — ML-based Traffic Classifier (3/3)

Use cases 3 — Smart construction (1/3)

- Purpose
 - Implementation of monitoring service of construction
 - Characteristic : scalable media data transfer based on alarm
 - We plan to co-work with HECAS (Korean vendor)
- Proposed Fog based Smart Construction Service
 - Collect Construction data (Noise, Vibration, Gas [9 types], video [4 types]) from Proposed Fog equipment
 - Transfer central cloud with selective videos (quality, type, etc.)
 - small amount of video volume

Use cases 3 — Smart construction (2/3)

Testbed setup

Noise information

- Noise, Vibration, 9 kinds Gas
- 4 kinds videos : FHD, 360 degree, Drone, FLIR

Use cases 3 — Smart construction (3/3)

Transfer Cloud with selective video (quality, type, etc..)

Requirements (1/2)

Requirements (2/2)

- Need to look at a small scope assuming that behavior of network
- Need data-set and problem with talent pool
- Start using specific field such as SDN-beyond architecture
- Identifying few scenarios
- Need to have a well-documented format
- Need to approach with classical ML-based techniques

Conclusions

- Network Machine Learning
 - It is required to support successful IoT and 5G services
- Difficulties of Network Machine Learning
 - Lack of standardized dataset and model
 - Complexity of network behavior
 - Various understanding of network machine learning
- It is the time to start the research and standardization of network machine learning

Thank you. Questions and Comments!!

