

A long and winding road: update of the ICNIRP draft HF guidelines

Zenon Sienkiewicz
ICNIRP
Public Health England, UK

Work in progress with draft values only

Please do not cite or quote

Scope

- Limit exposure to high frequency EMFs (100 kHz 300 GHz)
- Provide protection against adverse health effects under realistic conditions
- Consider occupational and general public exposure
- Consider direct and indirect exposure (contact with charged objects)
- Not included
 - electromagnetic interference
 - exposure for medical purposes
 - compliance issues (measurement protocols)

Methodolgy for setting guidelines

- Identify effects of exposure on biological system
- Determine which effects are
 - adverse to humans
 - substantiated (replicable, good quality, scientifically explicable)
- Identify health effect threshold
 - minimum HF exposure shown to produce harm, or
 - where insufficient HF research, minimum exposure predicted to cause harm from non-HF literature (i.e. operational health effect threshold)

Derive Basic Restrictions

- Apply reduction factors to health effect thresholds
 - to account for scientific uncertainty, relative importance of the health effect, variation across the population
 - reduction factors may differ based on these parameters
 - consistency across guidelines unless there is substantive reason for variation
- General public reduction factors are higher than for occupational
 - general public may not be aware of exposure
 - no training to mitigate harm
 - variation in sensitivity may be larger in general public

Calculate Reference Levels

- External field strength values derived from basic restrictions
- Provide a practical method for determining compliance with basic restrictions
 - derived to be conservative for all realistic exposure conditions
 - but not all possible exposure conditions

Scientific rationale used

- Use draft WHO EHC on RF fields plus original papers
 - there is an extensive body of relevant literature
 - from molecular and cellular research to epidemiology
 - no evidence that exposure causes cancer
 - available results of NTP animal study do not change that view
- Only evidence of potentially harmful effects from
 - temperature elevations above threshold
 - microwave hearing
 - electrostimulation
 - electroporation

- Microwave hearing can occur with brief pulses (300 MHz-10 GHz)
 - popping, hissing, clicking sound
 - generally requires low ambient noise levels
 - very localized thermal effect
 - not considered harmful, no specific restrictions
- Electrostimulation described in ICNIRP (2010)
 - not considered further here
- Electroporation occurs when intense electric field pulses cause reversible or permanent dielectric breakdown of cell membranes
 - questionable whether a problem in practice
 - no restrictions necessary

Body Core Temperature

- BCT increase used to indicate health effects
 - also dependent on other factors, like ambient temperature, clothing, work rate
- Mean BCT (approx 37°C) varies over day by ± 0.5 °C
 - thermoregulatory mechanisms used to keep BCT in thermonormal range
 - most health effects induced by hyperthermia (> 38 °C) resolve readily with no lasting effects, but risks of accident and heat stroke increase
- Increase >1 °C in BCT is defined as potentially harmful
 - consistent with ACGIH standard on heat stress at work
- Theoretical modelling/limited evidence used to determine WBA SAR

05-12-2017 9 Zenon Sienkiewicz

Local temperature

- Excessive localized heat can cause pain and damage cells (>41-43°C)
- Thermonormal temperatures
 - brain and abdomen temp is ~37°C, limbs (including skin and pinna) <36°C
- Local temperatures to be avoided
 - for brain >39°C, rest of body >40°C
- Temperature increases considered potentially harmful
 - >2°C in head and torso, >4°C in limbs
- Theoretical modelling/extrapolation used to determine local SARs

Draft Basic Restrictions

Parameter	Frequency range	Health effect Threshold Avg time/vol/area	Reduct Factor	Workers	Reduct Factor	General public
Body core temp rise (WBA SAR)	100 kHz-300 GHz	1°C 4 W/kg 30 min, WB	166	0.4 W/kg	50	0.08 W/kg
Local temp rise (SAR in head & torso)	100 kHz-6 GHz	2°C1 16 (0) V) kg 6 mm, 10g	2	8-10 W/kg	UO	1.6-2 W/kg
Local temp rise (SAR in limbs)	100 kH3-é GH	4°C 32-40 W/kg 6 min, 10g	2	6- 0 W/kg	10	3.2-4 W/kg
Local temp rise (penetrating PD in head & torso, limbs)	6-30 GHz 30-300 GHz	4°C 200 W/m² 6 min 4 d 1 m	2	100 W/m²	10	20 W/m ²
Local temp rise, rapid (pulsed, SA)	100 kHz-6 GHz	4 C ~ 16 kJ/kg 10 s, 10g	2	~ 8 kJ/kg	10	~ 1.6 kJ/kg
Local temp rise, rapid (pulsed, radiant exposure	300 GHz	4°C 2.5 t ^{1/4} kJ/m² 0- ? s	2	1.25 t ^{1/4} kJ/m ²	10	0.25 t ^{1/4} kJ/m ²
Contact currel s expressed as Guidance levels	100 kHz-110 MHz	Pain 10/20 mA, child/adult, 10 s	1	20 mA	1	10mA

05-12-2017 Zenon Sienkiewicz

Several issues to be resolved

- Reference levels
 - based on WBA SAR may exceed basic restrictions with small stature people, strange postures
 - based on WBA may cause violations of local basic restrictions
- Averaging time
 - currently 6 min with reduction from 10 GHz to 10 sec at 300 GHz
 - proposed WBA SAR 30 min; local SAR 6 min
 - local pulsed 10 s up to 6 GHz, 0- ?s above 6 GHz
- Draft for public consultation ready by summer 2018

Thank you for your attention

and your continued patience