Contribution to Envri+ Workshop on SMART Cable Systems

Secure Data Communication Protocol For Large Number of Distributed Sensors

Brest, France, 13 November 2017

Fadi Obied, Philippe Dhaussy

Univ. Européenne de Bretagne Lab-STICC / MOCS UMR CNRS 6285 ENSTA-Bretagne, Brest

fadi.obeid@ensta-bretagne.org philippe.dhaussy@ensta-bretagne.fr

Presentation Plan

- Context
- Insecure Model
 - Architecture and Functioning
- Conventional Security (AES256)
 - Scheme and Application
- Proposed Solution (RITA)
 - Scheme and Application
- Comparison
- Prototype
 - Simulation and Future Work
- Conclusion

Context

- The Joint Task Force (ITU-WMO-UNESCO IOC) investigates the potential of using submarine telecommunication cables for ocean and climate monitoring and disaster warning.
- The objectives of this contribution are to provide baseline requirements that will improve the security of data communication between sensors and data base hosts.
- The communication needs to have specific security properties as confidentiality, authenticity, integrity, availability, Interruptibility
- This contribution investigates an appropriate data encoding to secure data transmission.

Architecture

System Information

- Sensors (S):
 - They send data to hosts.
 - They do not need to be owned by the research headquarters.
- Repeaters (R):
 - They are owned by the same company as the communication line.
- Hosts:
 - Can be owned by different countries or companies.
- Scientific Center (SC):
 - Collects data from sensors.
- Data Base:
 - Provides an archive of collected data.
- Web Services:
 - Provides access to live and archived data.

Functioning

- Data Acquisition:
 - Sensor S_i sends (IDS_i,data) to Host A or B, or both.
 - Hosts forward data to the scientific center.
- Archiving:
 - SC insures received data are stored in one or multiple data bases.
- Public and private access:
 - Web services provide secure access to live and stored data.
- Control and configuration:
 - SC should be able to control, configure, and completely manage sensors.
 - To configure S_i, SC sends (IDS_i,data) through hosts.

Security

- Concerns:
 - Communication between sensors and SC only.
- Confidentiality:
 - Messages between S_i and SC are only readable by S_i and SC.
- Authenticity:
 - Messages received by SC originate only from S_i (the correct one).
 - Messages received by S_i originate from SC.
- Integrity:
 - Messages between S_i and SC cannot be modified by other parties.
- Availability:
 - If at some point the communication is interrupted, both S_i and SC would know.
- Interruptibility:
 - Communication can be interrupted by hosts.
 - Data sent from sensors during the interruption phase are collected by hosts.
 - Unchanged, unread, collected data can be forwarded to SC after interruption.

Classic Cryptography

Applying AES 256

Attacks and Solutions

- Chosen/Known plain text:
 - Use random padding.
- Replaying ciphers:
 - Use timestamps or session tags.
- Side channel analysis:
 - Use dynamic keys
- Inside job:
 - Use security boxes on SC.
- Message delay/delete:
 - Detect using synchronization and messages sequence.
- DoS:
 - No practical solution

Resulting cipher:

c = (address, enc(data,pad,time-stamp))

Table Update Example

Lab-STICC CITS Bretagne

Functions

F₁:	Input:	i,ST	Output:	T[i],ST[i]
F ₂ :	Input:	i,ST	Output:	T[i],ST[i]
Test :	Input:	i,T	Output:	ok/no

Special Cases

- Device A: Production frequency: 5x
- SBox A: Update frequency: 1x

Solution : Multiple SBoxes.

- Device A: unlimited/many possibilities
- SBox A: very limited possibilities.

Solution : Binary, base ten, etc.. + multiple SBoxes if needed.

Specifications

- Temperature/Pressures/Location/..
 - C = x/s, F = 1/s.
 - SBox big/numerous enough for x/s.
 - First value is divided.

- Images/Videos/.. (large data)
 - Binary.
 - Multiple SBoxes.
 - Or : Simulating multiple SBoxes.

Robustness

- Confidentiality:
 - Messages between SBox, and his twin are meaningless to others.
- Authenticity:
 - Only the twin of an SBox can send readable messages.
- Integrity:
 - Modified messages = unreadable messages.
- Availability:
 - Synchronous communication guarantees detection of unavailability.
- Interruptibility:
 - Communication can be interrupted by hosts.
 - The order is conserved, which means that messages can be processed later.

AES256 vs RITA

Producing 1 message per 1 computation step

l (u (s (

ENVRI

Messages

AES256 vs RITA

Producing 1 message per 5 computation steps

l (u (s (

ENVRI

Messages

Simulation

Simulation

- F > 20000 m/s : Insecure is faster then the others.
- 6666 m/s < F < 20000 m/s : 1 Update becomes instant.
- F < 6666 m/s : Full Update becomes instant.

Future Work

- Improving Simulations
 - Simplifying choices and options.
 - Improving code execution and performance.
 - Dynamic behavior depending on commands.
 - Improved resend/reset/..
- Realistic scenario based on multiple simulated devices.
- Physical implementation on embedded devices.
- Robustness analysis of design and implementation.
- Actual implementation on SMART Cable System.

Conclusion

- Concept studied and improved over a year.
- Proved useful at research level.
- Simulation and application still in early stages.
- Room for improvements.
 - Security level.
 - Performance.
 - Simulation.
- ENVRI+
 - Case study with industrial participants of the JTF Smart Cable?
 - Simulation of one of the potential demonstrators?
 - Interaction with ENVRI+ community.
 - Validating the compatibility with advanced scientific data management?

LOLhome.com