Workshop on "Control plane of IMT-2020 and emerging networks. Current issues and the way forward" Geneva, Switzerland, 15 November 2017

Intelligent IoE Fog Networking technologies based on ICN

2017.11.15.

Kwihoon Kim (kwihooi@etri.re.kr)

Electronics and Telecommunications Research Institute (ETRI), Republic of Korea

Agenda

1. Introduction (1/3)

Service aspects

- Al service appeared as the core of the 4th industrial revolution
- Attempts to enter AI service for each service domain
 - AI technology for image recognition, speech recognition, Go, etc. is superior to human
 - Al technology shows good performance even in creative field such as art, music, literature

1. Introduction (2/3)

- Network aspects
 - Massive devices, Mobile oriented, Massive traffic
 - Constrained device size, Real-time & Reliable comm.

1. Introduction (3/3)

- Service + Network aspects
 - Attempt to apply AI in network domain
 - Try with two perspectives
 - Supporting AI domain services well
 - Fog / Edge computing for data and computing of AI
 - Name based ICN for processing large data at network level
 - Using AI technique itself to improve network performance
 - AI-based network intelligence
 - Intelligent network management, configuration, control, etc

2. Related work – Fog/Edge Computing (1/3)

Why Fog/Edge Computing?

Cloud-computing at the network edge.

- Proximity
- Ultra-low latency
- High bandwidth
- Real-time access to access network and context information
- Location awareness

<Ref. ETSI MEC Overview>

2. Related work – Fog/Edge Computing (2/3)

- Benefit of Edge/Fog Computing
 - Quality of Experience

Real time

Contextualized services

Interactive

- Efficient utilization of the Radio and the Network resources
- Innovative applications and services towards mobile subscribers, enterprises and vertical segments

Analytical

Security and

privacy

Distributed

2. Related work – Fog/Edge Computing (3/3)

• Edge/Fog computing vs. cloud computing

2. Related work – ICN (1/3)

- Why ICN(Information-Centric Networking)?
 - The estimated video traffic will reach 79% of the Internet traffic by 2018
 - Content distribution is the primary task for today's Internet
 - Traditional paradigm of communication network is endto-end, i.e. host-centric
 - End-to-end has many drawbacks when dealing with large scale content distribution, efficiency, security and privacy
 - Paradigm shifts from host-centric to content-centric
 - Content consumer only cares what it is instead of where it is from

2. Related work – ICN (2/3)

- Characteristic of ICN(Information-Centric Networking)
 - ICN is a clean-slate redesign of the current Internet infrastructure
 - Communication object (CO) is accessed by name
 - CO includes a content, a device, and a service
 - ICN enables in-network caching
 - so that content is distributed in a scalable, cost-efficient and secure manner
 - Reasonable solution for low-latency & massive IoT

2. Related work – ICN (3/3)

• Benefit of ICN(Information-Centric Networking)

<As Is> Server bottleneck with concentrated on contents in current IP environment

<To Be> Transfer Content without Server bottleneck in ICN environment

3. Requirements & Principles (1/2)

General Requirements

3. Requirements & Principles (2/2)

• Design Principles

3.1 Considerations for IoE

When the IoT data generated is

- Delay-sensitive
- High-volume
- Trust-sensitive
- (Intermittently)
 Disconnected

Video Analytics

<u>Countless examples</u>
 <u>Both near term</u>

20K wys Legacy (24x7) Cloud (~1.6 Tbps)

Augmented Reality

- Data heavy
- Compute intensive
- Response times <30ms
- Small form factor
- Low power

Both near term
 & further out

3.2 Considerations for Information

4. Proposed Intelligent Framework

self-learning Knowledge-converged Super Brain (KSB)

① Collect data with status ② Refine the collected data ③ Machine learning · knowledge extraction

④ By inferring · optimizing by fusion with domain expert knowledge ⑤ Provision of prediction, prevention and optimization intelligence

* KSB: Knowledge-converged Super Brain

4.1 Proposed self-learning platform

All-around cross-domain knowledge convergence self-learning engine platform

- to refine and self-learn the multimodal data collected from the IoE network, extract the knowledge,
- to provide knowledge inference and optimized domain intelligence services by merging with domain knowledge

kwihooi@etri.re.kr

(Concept)

4.2 Proposed Fog/Edge Platform

- A novel Domain networking architecture
 - ICN based communication
 - <u>CICN based</u> Implementation
 - *IP and ICN interworking* with CICN
 - Fog/Edge computing concept
 - Define of specific purpose nodes
 - Gateway node, networking, storing, computing, Information process,
 - Intelligence
 - Intelligent Information analysis
 - <u>Applying ML</u>

* CICN(Community ICN) : ICN open source made by CISCO(formerly Parc CCNx)

4.2.1 Basic ICN vs. Proposed Fog

4.2.2 Information Process

- IoE data preprocessing
 - Classification of IoE information types (application types)
 - Classification of Content Object by CNN and RNN
 - Applying cache strategies
 - E.g., mission critical information must be push to Cloud or consumer directly without cache
- Interest analysis
 - Develop filter rules
 - Name based filter
 - Applying cache strategies
 - Prefetching Information
 - Decision of Cache rules

5. Prototype & Applying case

- 1. Information prefetching : Considering Autonomous network control aspects
- 2. Mobile Crowd Sensing : Considering Intelligent Application service aspects
- 3. Smart Construction : Considering Both Autonomous network control & Intelligent Application service aspects

5.1 Applying case – Information prefetching (1/4)

- Purpose
 - Proposed Fog vs. basic CICN performance comparison
 - KPI : Information acquire time & packet loss ratio

5.1 Applying case – Information prefetching (2/4)

• Proposed architecture (Information prefetching)

5.1 Applying case – Information prefetching (3/4)

• Result

Se 🗐 iPing GUI	S S G IPing GUI
Name: ccnx:/CloE/hello Count: 10000 Interval(ms): 1	Go! Name: ccnx:/CloE/hello Count: 10000 Interval(ms): 1 Go!
Ping test	Ping test finished
61%	100%
	Cancel
1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010053: time= 683059 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010055: time= 682866 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010055: time= 681729 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010069: time= 668422 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010069: time= 666746 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010070: time= 666746 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010070: time= 666712 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010070: time= 6657132 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010071: time= 655132 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010078: time= 657132 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010080: time= 694286 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010080: time= 694286 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010080: time= 692163 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010083: time= 692163 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010083: time= 699428 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010083: time= 699428 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010083: time= 699428 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010083: time= 69942 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010085: time= 688955 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010085: time= 688606 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010086: time= 687852 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010087: time= 682409 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010087: time= 673333 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010097: time= 672258 us 5ent = 10000 : Received = 6119 : AvgDelay 590377 us	1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010079: time= 11747 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010080: time= 12123 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010081: time= 10579 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010082: time= 10978 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010084: time= 1123 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010084: time= 11299 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010085: time= 11337 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010087: time= 12039 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010087: time= 12040 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010089: time= 12040 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010091: time= 12171 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010091: time= 11101 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010093: time= 45132 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010093: time= 43050 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010093: time= 43050 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010093: time= 42000 us 1400 bytes from ccnx:/CloE/hello/6b8b4567/1400/010093: time= 42000 us

CICN(Prefetching off)

Proposed Fog(Prefetching on)

5.1 Applying case – Information prefetching (4/4)

- Summary
 - Light traffic: transfer 100 interest per every 1 sec
 - Heavy traffic: transfer 10⁷ interest per every 100 usec

	CICN		Proposed Fog	
	Light	Heavy	Light	Heavy
Info. Query time	56 msec	786 msec	28 msec	30 msec
Packet loss ratio	0%	42%	0%	0%

5.2 Applying case – Mobile crowd sensing (1/4)

- Purpose
 - Implementation of ICN based Mobile Crowd Sensing
 - characteristic : Mobile Fog & without IP

5.2 Applying case – Mobile crowd sensing (2/4)

- Basic MCS architecture
 - Crowdsourcing of sensor data from Mobile devices

- Proposed Mobile Fog based MCS architecture
 - Acquire data from Mobile Fog device
 - Only transfer Data analysis result to Central Cloud
 - small amount of volume

5.2 Applying case – Mobile crowd sensing (4/4)

- Summary
 - New MCS based on proposed fog architecture
 - Service implementation based on Ethernet connectivity using ICN (without IP)
 - Data collection based on local area using BLE beacon

	Mobile Crowd Sensing	Propose Fog based MCS
Connectivity	 IPv4/IPv6, TCP/UDP, HTTP/CoAP 	• Ethernet, ICN App.
Data collection	Cloud based data collection	 Fog node based data collection

5.3 Applying case – Smart construction

- Purpose
 - Implementation of monitoring service of construction
 - Characteristic : scalable media data transfer based on alarm
 - * We plan to co-work with HECAS (Korean vendor)
- Testbed setup

Bundang-gu, Sungnam-si, Kyunggi-do, Korea

6. Summary

- Data are transformed into wisdom through the IoE computing architecture including Intelligent Fog networking platform.
 - We assume that huge amount of sensed data are generated from smart things, and these data may be formed as single unit data, time series data, or meaningless digits.
 - Firstly these data are <u>processed or analyzed at the Fog</u> <u>platform</u>, so that the result of analysis may be transmitted to Cloud.
 - After then accumulated <u>these pre-analyzed data as called</u> <u>information</u> are again processed to make <u>common knowledge</u>.
 - Finally, the common knowledge will be applied to <u>specific IoE</u> <u>service domains as the wisdom</u>.

lucation

learning

Machine Learning

Thank you.

Kwihoon Kim (kwihooi@etri.re.kr)

