Possible network parameters on IMT-2020/5G transport network

16th, October, 2017
KDDI (Japan)
Noboru Yoshikane
Agenda

1. Introduction
 ✓ ITU-R IMT vision
 ✓ Possible usage scenarios

2. Possible 5G network deployment scenario
 ✓ Network structures
 ✓ Deployment scenario

3. Possible 5G network parameters
 ✓ Network topology
 ✓ Bandwidth, Interface type, Latency, etc.

4. Summary
ITU-R IMT Vision (IMT-2020)

- Enhancement of key capabilities from IMT-Advanced to IMT-2020

- Peak data rate: 20Gbps
- User experienced data rate: 100Mbps
- Area traffic capacity: 10Mbps/m²
- Connection density: 10^6/km²
- Latency: 1ms (Radio segment)

The importance of key capabilities in different usage scenarios
- eMBB, mMTC, and URLLC

Possible 5G usage scenarios

The user-centric broadband world

Vivid experience
Realistic-sensational remote virtual experience

Viewing real-time free-viewpoint 3D video

Industry promotion, Social Infrastructure
Connected car
Control of unmanned agricultural machine

Security camera

URLLC

eMBB

mMTC

au: The mobile brand of KDDI.
Agenda

1. Introduction
 ✓ ITU-R IMT vision
 ✓ Possible usage scenarios

2. Possible 5G network deployment scenario
 ✓ Network structures
 ✓ Deployment scenario

3. Possible 5G network parameters
 ✓ Network topology
 ✓ Bandwidth, Interface type, Latency, etc.

4. Summary
Possible radio access network

- 5G bands will be used in combination with 4G to complement each other.
 - Requirement of use cases (Mobility, Area, Latency, etc.)
 - Separation of C-plane and U-plane
 - Standalone(SA), Non-Standalone(NSA) scenarios

Possible frequency allocation

<table>
<thead>
<tr>
<th></th>
<th>3.6GHz</th>
<th>6GHz</th>
<th>28GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5G</td>
<td></td>
<td>Below 6GHz</td>
<td>28GHz-band</td>
</tr>
</tbody>
</table>

Application example:
- 5G: High speed, Small area.
 - Complementary
- 4G: Lower speed, Wide area.
Example: Multiple slices concurrently operated on the same infrastructure.

Toward 5G network (3GPP)

3GPP has approved a consensus to move forward on plans to accelerate specifications for a non-standalone (NSA).

NSA (Non-Standalone) will use the existing LTE core and RAN while adding a new 5G RAN.

Standalone (SA) means full user and control plane capability for 5G RAN, using the new 5G core network.

Option x: Proposal for 5G in 3GPP

Copyright(C) 2017 KDDI Corporation. All Rights Reserved.
Possible 5G deployment scenario

- Initial phase: Large capacity services (eMBB)
- Second phase: Low latency services (URLLC), IoT services (mMTC)

NSA: Non-stand alone, SA: Stand alone

- High speed, large capacity service
- Wireless Low latency
- E2E Low latency
- Connected car
- Existing band: 4G
- New RAT: 28GHz
- Existing 3GPP band: Below 6GHz

HD Video
Security Camera
Connected car

5G

Down Max.20Gbps
Up Max.10Gbps

eMTC
NB-IoT

Rel.13,14

Rel.16: High density, Massive connection service

Copyright(C) 2017 KDDI Corporation. All Rights Reserved.
Agenda

1. Introduction
 ✓ ITU-R IMT vision
 ✓ Possible usage scenarios

2. Possible 5G network deployment scenario
 ✓ Network structures
 ✓ Deployment scenario

3. Possible 5G network parameters
 ✓ Network topology
 ✓ Bandwidth, Interface type, Latency, etc.

4. Summary
Possible network topologies

- **Fronthaul, Middlehaul, and Backhaul networks**
 - **Network reach**
 - Fronthaul network: Less than 20 km
 - Middlehaul/Backhaul network: Less than 200 km

Possible network topologies are the same as the networks described in TD78r2/G.

Possible network topologies (Cont’d)

Possible 5G network parameters

<table>
<thead>
<tr>
<th>Items</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| Network reach | Fronthaul: Less than 20 km
Middle/Backhaul: Less than 200 km |
| Estimated values for bandwidth | Fronthaul: $N \times 10\ G$ or higher (e.g. $25\ G$)
Middle/Backhaul: $N \times 100\ G$ or beyond $100\ G$ |
| Estimated values for latency allocation | UE – CU: less than 4 ms (Tentative) |
| Estimated interface type | Fronthaul: eCPRI, etc.
Middle/Backhaul: 100 GbE or beyond 100 GbE (over OTN) |
| Slice | Each service should be isolated at layer 2 or higher (e.g. VLAN, etc.) |
| Synchronization | N/A (GPS-based synchronization) |
| OAM | Packet network based OAM (e.g. E-OAM) |
Summary

Possible usage scenarios for 5G network era
- Three important capabilities
 - eMBB, mMTC, URLLC
- Vivid experience, Industry promotion, Social infrastructure
 - Viewing real-time free-viewpoint video, Connected car, etc.

Possible 5G network deployment scenario
- The 5G networks are going to be built around a combination of the 4G networks (Non-standalone (NSA) approach).

Possible 5G network parameters
- Network reach, Bandwidth, Latency allocation, Interface type, Slice, Synchronization, and OAM.