

ITU Workshop on Security Aspects of Intelligent Transport System 28 August 2017

## Lightweight Cryptography for ITS Security

Shiho Moriai Security Fundamentals Lab. Cybersecurity Research Institite NICT, Japan



国立研究開発法人 情報通信研究機構 National Institute of Information and Communications Technology

## **Outline of my talk**

Emerging Automotive/ITS Services

Automotive sensors are key factors

Lightweight Cryptography

- to protect automotive sensor data and address privacy concerns with "lightweight" cost
- Standards and Guidelines
- Implementation aspects

# Emerging Automotive/ITS Services

## **Emerging Automotive/ITS Services**

#### V2X communication services

#### for road safety

4



http://www.carnectiv.com/2014/02/association-of-global-automakers-research-v2v/

## **Emerging Automotive/ITS Services**

#### Use of in-vehicle sensor data

privacy concern

Insurance company



to drive safe and save

upload

- Miles driven
- Acceleration
- Braking
- Right and left turns
- Speeds of 80 mph or over
- Time of day the car is driven

"Automobile Driver Fingerprinting" by Enev et al., in Proceedings on Privacy Enhancing Technologies, 2016(1):34-51



5

#### **Emerging Automotive/ITS Services**

#### Autonomous Driving

#### for safety and more

Correctness, integrity,

authentication, and authenticity of sensory information is crucial to system reliability.

#### **Automotive Sensors**

- Critical to system reliability
- Facing privacy issues

#### Concerns

- Insufficient Security Countermeasures
- Resource-constrained
  - difficult to implement a full-fledged security solution
- Misuse of the Data
- Active Attacks (by data modification)

# Lightweight Cryptography

## Lightweight Cryptography

- Cryptographic primitives with advantages (lightweight properties) in specific implementation efficiency measures
  - admitting tradeoffs between efficiency and security

| Efficiency measu           | res                      | Application examples                                              |
|----------------------------|--------------------------|-------------------------------------------------------------------|
| Hardware                   | Gate Count (Power, Cost) | RFID, Low-cost sensors                                            |
| Implementation             | Energy                   | Medical/healthcare devices,<br>battery-powered devices            |
|                            | Latency                  | Memory encryption, In-vehicle devices, Industrial control systems |
| Software<br>Implementation | Memory (ROM/RAM)         | Consumer electronics, Sensors, In-<br>vehicle devices             |

### **History of Downsizing Cryptosystems**



## Standards on Lightweight Cryptography

#### ISO/IEC 29192 (Lightweight Cryptography)

#### – Part 1: General

- editors: Riaal Domingues, Shiho Moriai
- Part 2: Block ciphers
  - editors: Shiho Moriai, Axel Poschmann
- Part 3: Stream ciphers
  - editor: Hirotaka Yoshida
- Part 4: Mechanisms using asymmetric techniques
  - editors: Matt Robshaw, Jean-Francois Misarsky
- Part 5: Hash-functions
  - editors: Axel Poschmann, Shiho Moriai
- Part 6: Message authentication codes (MACs)
  - editors: Hirotaka Yoshida, Suresh Ramasamy

#### **ISO/IEC 29192 Standardization Status**



### **ISO/IEC 29192 Standardization Status**

#### US

- NSA designed lightweight block ciphers for IoT (SIMON & SPECK) and proposed them for ISO/IEC 29192-2.
- NIST hold workshops on LWC and published the report NISTIR 8114 (2017.3).
  - Lightweight Cryptography Workshop 2015, 2016

# Emerging Automotive/ITS Services

## CRYPTREC

#### **<u>Crypt</u>**ography <u>R</u>esearch and <u>E</u>valuation <u>Committees</u>

- Project to evaluate and monitor the security of cryptographic techniques used in Japanese e-Government systems
- Goal of the project
  - To ensure the security of Japanese e-Government systems by using secure cryptographic techniques and to realize a secure IT society.



#### **History of CRYPTREC**

2003

2000

#### **CRY**PTREC launch, Call for cryptographic techniques

Publication of the e-Government Recommended Ciphers List

"Policy for the use of ciphers in information system procurement of each governmental agency" was approved

2009

Call for cryptographic techniques for the revision of the e-Government Recommended Ciphers List

Publication of the CRYPTREC Ciphers List

2013

## **CRYPTREC Organization**



## Lightweight Cryptography WG

#### Goal

LWC WG started in 2013 so that appropriate lightweight cryptography can be selected and procured for any applications where they are required.

#### **Activities**

- Survey and research on state of the art in LWC
- Research on applications of LWC
- Implementation evaluation
- Publish reports/guidelines as deliverables



#### LWC WG Committee Members

| Chair | Naofumi Homma      | Tohoku Univ.                           |  |
|-------|--------------------|----------------------------------------|--|
|       | Kazumaro Aoki      | NTT                                    |  |
|       | Tetsu Iwata        | Nagoya Univ.                           |  |
|       | Kazuto Ogawa       | NHK Science & Technology Research Lab. |  |
|       | Hisashi Oguma      | Toyota InfoTechnology Center           |  |
|       | Kazuo Sakiyama     | The Univ. of Electro-Communications    |  |
|       | Kyoji Shibutani    | Sony Corporation                       |  |
|       | Daisuke Suzuki     | Mitsubishi Electric Corporation        |  |
|       | Yuichiro Nariyoshi | Renesas Electric Corporation           |  |
|       | Kazuhiko Minematsu | NEC Corporation                        |  |
|       | Hideyuki Miyake    | Toshiba Corporation                    |  |
|       | Dai Watanabe       | Hitachi, Ltd.                          |  |
|       |                    | 19                                     |  |

# CRYPTREC Guideline on lightweight cryptography

- » The guideline was written so that it facilitates easy selection of appropriate lightweight cryptographic primitives for (non-expert) users and promotion of LWC.
- » It was published in both Japanese and English on the CRYPTREC web site.
  - » http://www.cryptrec.go.jp/
- » More than 100 pages

## Contents of the Guideline (1/2)

- 1. Introduction
- 2. Lightweight Cryptography and Its Applications
  - 1. What is Lightweight Cryptography?
  - 2. Target Applications of Lightweight Cryptography
  - 3. Selection of Lightweight Cryptographic Algorithms and Parameters
  - 4. Effects of Lightweight Cryptography

## Contents of the Guideline (2/2)

- 3. Comparing the Pe Lightweight Crypt
  - 1. Block Ciphers
  - 2. Authenticated Enc
- Lightweight Cryp Schemes
  - 1. Block Ciphers
  - 2. Stream Ciphers
  - 3. Hash Functions
  - 4. Message Authenti
  - 5. Authenticated Enc

|                                                                                          | Hash function                                                                          |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Name                                                                                     | Keccak                                                                                 |  |  |  |  |
| Designers                                                                                | Guido Bertoni (STMicroelectronics), Joan Daemen (STMicroelectronics),                  |  |  |  |  |
|                                                                                          | Michaël Peeters (NXP Semiconductors), Gilles Van Assche (STMicroelectron-              |  |  |  |  |
|                                                                                          | ics)                                                                                   |  |  |  |  |
| Publication                                                                              | 2008 (NIST SHA-3 Competition)                                                          |  |  |  |  |
| Specifications                                                                           | http://keccak.noekeon.org/                                                             |  |  |  |  |
| Features                                                                                 | Keccak is a family of sponge functions. Seven permutations are defined and             |  |  |  |  |
|                                                                                          | indicated by Keccak-f[b] ( $b \in 25, 50, 100, 200, 400, 800, 1,600$ ). From the view- |  |  |  |  |
|                                                                                          | point of lightweight cryptography, the schemes using Keccak-f[100], Keccak-            |  |  |  |  |
|                                                                                          | f[200], and Keccak-f[400] will be described.                                           |  |  |  |  |
|                                                                                          | m Keccak-f[b] n r r'                                                                   |  |  |  |  |
|                                                                                          | Keccak-f[100] 80 20 20                                                                 |  |  |  |  |
|                                                                                          | $\frac{\text{Keccak-f}[200]}{64}  64  72  72$                                          |  |  |  |  |
|                                                                                          | Keccak-f[400] 128 144 144                                                              |  |  |  |  |
|                                                                                          | * n: output length, r: input block length, r' : output block length                    |  |  |  |  |
| Security                                                                                 | Many papers have analyzed Keccak, and no critical vulnerability has been               |  |  |  |  |
| Analysis                                                                                 | reported.                                                                              |  |  |  |  |
| Performance                                                                              | Hardware implementation[6](130nm process)                                              |  |  |  |  |
| Analysis                                                                                 | Area [GE] Latency [clk] Throughput [kbps]                                              |  |  |  |  |
|                                                                                          | Keccak-f[100] 1250 800 2.5                                                             |  |  |  |  |
|                                                                                          | Keccak-f[200] 2520 900 8.00                                                            |  |  |  |  |
|                                                                                          | Keccak-f[400] 5090 1000 14.40                                                          |  |  |  |  |
| Standardi-                                                                               | The scheme using Keccak-f[1600] is standardized by NIST in FIPS202 [3]. For            |  |  |  |  |
| zation                                                                                   | SHA-3 derived functions, a series of special publication is available by NIST          |  |  |  |  |
|                                                                                          | SP800-185 [4].                                                                         |  |  |  |  |
| Market                                                                                   | SHA-3 is being adopted in many different applications.                                 |  |  |  |  |
| Deployment                                                                               | http://csrc.nist.gov/groups/STM/cavp/documents/sha3/sha3val.html,                      |  |  |  |  |
|                                                                                          | http://www.3gpp.org/DynaReport/35-series.htm.                                          |  |  |  |  |
| Open Source                                                                              | http://keccak.noekeon.org/files.html,                                                  |  |  |  |  |
| Information                                                                              | https://github.com/gvanas/KeccakCodePackage                                            |  |  |  |  |
| AL WALL THE WALL ALL AND ALL AND ALL AND ALL AND SHE SHE SHE SHE HAD SHE AND SHE AND SHE |                                                                                        |  |  |  |  |

Figure 3.31: Speed with 512-byte ROM and 128-byte RAM

#### **Implementation Evaluation**

#### Aim

Evaluate some lightweight block ciphers using the same interface and platform for a fair comparison.

#### Target algorithms

- 12 Lightweight Block ciphers
  - 10 Lightweight Authenticated Encryption schemes
- Implementation Platforms
  - Hardware implementation
    - ASIC (library: NANGATE Open Cell Library (45nm CMOS))
  - Embedded Software implementation
    - Processor: Renesas Electronics RL78 (16bit microcontroller)

#### Hardware Implementation

- Standard CMOS cell library: NANGATE Open Cell Library (45nm)
- 3 Architectures: Unrolled, Round, Serial implementations
- Measures: Max Frequency, Throughput, Gate counts, Latency, Power, Peak power, Leak power



## Serial Implementation (Low-cost)



## Serial Implementation (Low-cost)



#### **Round Implementation**

Gate Count Many lightweight crypto can be implemented within ~4Kgates.



#### **Round Implementation**

**Throughput** Many lightweight crypto achieve 10 times higher throughput than AES with a similar gate size (~60Mbps with ~6Kgates).



## **Unrolled Implementation (High-Speed)**

**Gate Count** Low-latency cryptography can encrypt within one clock cycle with ~1/10 gate counts of AES.



## **Unrolled Implementation (High-Speed)**

**Path Delay** Low-latency cryptography achieves real-time security (several ns) with less than 20 Kgate counts.



#### **Embedded Software Implementation**

- Processor
  - Renesas Electronics RL78 (16bit microcontroller)
    - General-purpose (G1x series): ROM 1KB~, RAM 128B~
      Automotive (F1x series): ROM 8KB~, RAM 512B~

Measures

Only limited memory is available for crypto. Small memory requirement increases selection options of microcontrollers.

- Speed, RAM size, ROM size
- Optimized for speed within 4 combinations of limited memory size (ROM, RAM).

| ROM | 512 Byte | 1024 Byte |
|-----|----------|-----------|
| RAM | 64 Byte  | 128 Byte  |

#### Implementation within (ROM 1024Byte, RAM 128Byte)



#### Implementation within (ROM 512Byte, RAM 128Byte)



#### Least ROM Size with RAM 128 byte

#### [Enc] Least ROM Size with RAM 128



#### Speed [Enc] ROM Size – Speed with RAM 128 cycles/byte



35

In emerging automotive/ITS services, protection of automotive sensor data is critical to system reliability and privacy concerns.

 Lightweight cryptography has great potentials for this purpose on resource-constrained devices.