Safety First for Automated Driving
ADA/ITU Workshop in Budapest on the 10th September

Anti trust note: All following information need to be understood as a minimum basis shared commonly by the partner consortium. A complete safety case for a concrete product depends heavily on the specific operational design domain and needs always specific additional measures.
David Lanyi

Head of Machine Learning Methods
Continental BU ADAS – Deep Learning Competence Center

• 2018- Continental
• 2012-2018 IBM Research Zurich
• 2014-2015 ETH Zurich
• MS in computer science, Budapest University of Technology and Economics
Abstract
Automated Driving Systems

› Publication merges input of OEMs, tiered suppliers and key technology providers

› Positive risk balance
 › Safety by design and verification & validation methods
 › Comprehensive approach to safety relevant topics

› Intends to collaborate to industrywide standardization
The Twelve Principles of Automated Driving

› SAFE OPERATION
 › Deal with degradation
 › Fail operational

› SAFE LAYER
 › Recognize system limits
 › React to minimize the risk

› OPERATIONAL DESIGN DOMAIN
 › ODDR determination
 › Manage typical situations

› BEHAVIOR IN TRAFFIC
 › Manners on the road
 › Conforming to rules

› USER RESPONSIBILITY
 › Responsibilities
 › Mode awareness

› VEHICLE-INITIATED HANOVER
 › Minimal risk condition
 › Takeover request

› VEHICLE OPERATOR-INITIATED HANOVER
 › Engaging and disengaging of AD system
 › Ensure intent of handover with high confidence

› INTERDEPENDENCY (OPERATOR ↔ AD SYSTEM)
 › Take effects on the driver due to automation into account

› DATA RECORDING
 › Record relevant data when an event or incident is recognized
 › Complies with the applicable data privacy laws

› SECURITY
 › Protect the automated driving system from security threats

› PASSIVE SAFETY
 › Crash scenarios (vehicle layout modifications)
 › Alternative seating position (new uses for the interior)

› SAFETY ASSESSMENT
 › Verification and validation to ensure that safety goals are met
 › Reach a consistent improvement of the overall safety
This publication is structured as interconnected topics which build upon one another to achieve an overall safety vision.

The roof ridge in the figure represents the positive risk balance as an initial starting point and the overall goal.
Introducing L3 automated driving system,

the vehicle operator is allowed to cede full control to the vehicle during the nominal driving task within ODD

user’s correct interpretation of the actual driving mode and related responsibility for dynamic driving tasks (DDT) is crucial to enable safe driving
Realizing Nominal and Degraded Capabilities

› Capabilities based on Sense – Plan – Act to achieve **nominal** performance

› Ensure **degradation** in case of insufficient nominal performance or other failures

› Ensure safe mode **transitions**
Example Traffic Jam Pilot (L3)

<table>
<thead>
<tr>
<th>Nominal Function Definition</th>
<th>Sensing Elements for Localization</th>
<th>Sensing Elements for Perceive Relevant Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigilant driver with driver’s license, driving only on structurally separated roads typically no pedestrians or cyclists 60 km/h max only with leading vehicles no lane changing no construction sites only during daylight, without rain only temperatures higher than freezing point</td>
<td>Determine whether the vehicle is on the highway</td>
<td>Leading vehicles in front of the ego vehicle Lane markings (vulnerable) road users (even though they are excluded from the ODD) Diversity object detection methods are preferred to cover the performance weakness of single sensors High-level object fusion is considered a meaningful measure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimal Risk Conditions</th>
<th>ADS Mode Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver has taken over control</td>
<td>Check activation conditions Check deactivation conditions Ensure that the vehicle has either reached a fail-safe state Or that the user has safely taken over control</td>
</tr>
<tr>
<td>Deactivate as soon driver has control or the vehicle is stopped</td>
<td></td>
</tr>
<tr>
<td>Vehicle is stopped in-lane</td>
<td></td>
</tr>
<tr>
<td>Immediately stop the vehicle with fixed deceleration</td>
<td></td>
</tr>
<tr>
<td>lateral vehicle movement based on last valid trajectory</td>
<td></td>
</tr>
<tr>
<td>Driver has taken over control Deactivate as soon driver has control or the vehicle is stopped Vehicle is stopped in-lane Immediately stop the vehicle with fixed deceleration lateral vehicle movement based on last valid trajectory</td>
<td></td>
</tr>
</tbody>
</table>
Verification and Validation
Key Challenges for V&V of L3 and L4 Systems

› Statistical demonstration of system safety and a **positive risk balance** without driver interaction

› System safety with driver **interaction** (especially in takeover maneuvers)

› Consideration of scenarios currently **not known** in traffic

› Validation of various system **configurations** and variants

› Validation of (sub) systems that are based on **machine learning**
Test Strategies

› A viable test strategy responds to the **key challenges** in the V&V of automated driving systems

› by carefully breaking down the overall **validation objective** into **specific test goals** for every object under test

› and by defining **appropriate** test platforms and test design techniques
Safety Aspects of Machine Learning Systems

› General considerations
 › Be agnostic to means of implementation; documentation during full process chain, creation of safety artefacts.

› Define
 › ODD, data set, probabilistic output, KPIs, target hardware

› Specify
 › Data set specs, labelling specs, labelling quality, DL model architectures, observers.
Safety Aspects of Machine Learning Systems

› Develop & Evaluate
 › DL model architecture (layers, connectivity, activations, pooling/upsampling, stride, …); composition of loss, regularization, optimization methods (solver, learning rate, …).

› Deploy & Monitor
 › Challenges: unseen data, confidence interpretation, emerging features, distributional shift.
David Lanyi

Head of Machine Learning Methods
Continental BU ADAS – Deep Learning Competence Center

- 2018- Continental
- 2012-2018 IBM Research Zurich
- 2014-2015 ETH Zurich
- MS in computer science, Budapest University of Technology and Economics