

Standardisation needs of Artificial Intelligence to support automated driving

Andras Csepinszky

Director of Advanced Automotive Technology

10-09-2019

Acknowledging the work of ISO/IEC JTC1/SC42

Standard and/or project under the direct responsibility of ISO/IEC JTC 1/SC 42 Secretariat (9)	17	Stage	1t	ICS	ţţ
● ISO/IEC AWI TR 20547-1 [Under development] Information technology Big data reference architecture Part 1: Framework and application process		20.00			
● ISO/IEC DIS 20547-3 [Under development] Information technology Big data reference architecture Part 3: Reference architecture		40.92		35.020	
● ISO/IEC WD 22989 [Under development] Artificial intelligence Concepts and terminology		20.20			
● ISO/IEC WD 23053 [Under development] Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML)		20.20			
● ISO/IEC NP TR 24027 [Under development] Information technology Artificial Intelligence (AI) Bias in AI systems and AI aided decision making		10.99			
● ISO/IEC NP TR 24028 [Under development] Information technology Artificial Intelligence (AI Overview of trustworthiness in Artificial Intelligence		10.99			
● ISO/IEC NP TR 24029-1 [Under development] Artificial Intelligence (AI) Assessment of the robustness of neural networks Part 1: Overview		10.99			
● ISO/IEC NP TR 24030 [Under development] Information technology Artificial Intelligence (AI) Use cases		10.99			
• ISO/IEC NP 38507 [Under development] Information technology Governance of IT Governance implications of the use of artificial intelligence by		10.99			
organizations					

Why to standardize AI related items in the context of ITS?

- weak AI or narrow AI for specific tasks
- strong AI still far far away!!!
- ITS applications and related areas/actors which may use AI technology:
 - Automated vehicles
 - Road side units
 - Traffic management centers
 - Map providers
 - Service providers
 - Network providers
 - Mobility operators
 and many more...

Why to standardize AI related items in the context of ITS?

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey orders given it by human beings except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law

WHY ASIMOV PUT THE THREE LAWS OF ROBOTICS IN THE ORDER HE DID:

AI 4 Mobility - HMI

Al can provide the basis for efficient Human/Machine interaction with e.g. speech recognition and providing as an output for the driver a personalized driving experience enhanced with intelligent assistants that can be summoned with a voice command.

They can potentially provide applications such as driver behavior monitoring (attention detection, drowsiness detection etc.)

GAZE TRACKING

FACE RECOGNITION

HEAD TRACKING

LIP READING

AI 4 Mobility – Vehicle control

Descriptions

Budapest University of Technology – Department of Automotive Technologies:

- from the perspective of the vehicle
- considering deep learning models
- from the perspective of adverserial examples attacking AI algorithms
- "logical skull" to develop around the AI "brain"?

Al Verification, Validation & Interpretability

Focus: standardization in automotive industry

Verifiable Adversarial Robustness and Interpretability of Neural Networks

PhD research by: Viktor Remeli Advisors: Dr. András Rövid, Dr. Zsolt Szalay

viktor.remeli@gjt.bme.hu

BME

NNG 🔤

26/03/2019

Source: Viktor Remeli, Budapest University of Technology and Economics, Department of Automotive Technologies

AI 4 Mobility – Vehicle control

Budapest University of Technology – Department of Automotive Technologies investigating 4 apsects of AI systems:

- demonstration of the vulnerabilities of AI
- specification of the intended AI behaviour
- Verification of the guaranteed properties of the system with AI
- Training reliable models is it possible? And how?

Verification of Deep Neural Networks

Four main problems I am concerned with

viktor.remeli@gjt.bme.hu

Source: Viktor Remeli, Budapest University of Technology and Economics, Department of Automotive Technologies

AI 4 Mobility – Roadside infrastructure

V2P

Intelligent Roadside Units by NXP

• Sense

- Direct sensing of vehicles and pedestrians via cameras and RADAR
- Direct sensing of vehicles from their V2X
 position reports
- Indirect sensing via Cloud provided information
- Think
 - Sensor fusion
 - Traffic flow optimization
 - Vulnerable Road User Warnings
- Act
 - Traffic light control
- Communicate
 - Direct communication of signal phase and timing to approaching vehicles
 - Broadband wireless hotspot connectivity (cellular and Wi-Fi)

Traffic Management Center

AI 4 Mobility – Traffic Managment

ENGLISH / MAGYAR

LOGIN

Budapest University of Technology – Department of Networked Systems and Services:

- launches a government funded project to develop an Intelligent Traffic Management System
- using AI technology and historical traffic data
- to deliver a predictive services to support traffic management decisions
- the project will be able to provide first hand requirements and needs

2019-04-10 Tanszékünk

TALENT PROGRAM

JOB OPPORTUNITIES

A klubnan tómáia

AI 4 Mobility – Map production and provisioning

Hungarian Mobility Platform is planning to work on the below topics:

- make raw HAD map data (LIDAR point cloud) object classification automated
- re-annotate/re-process Budapest Public Roads' raw map data of Budapest to make it suitable for automated driving
- to help discover and map changes on the road infrastructure (surface, localisation landmarks and obstacles)

RESEARCH

Automated detection of map features

Cooperation JOANNEUM RESEARCH and TU-Graz

THE INNOVATION COMPANY

17

Interaction of Als located in different locations of the ITS ecosystems?

RW: Road Works mobile beacon GPS: Global Positioning System VMS: Variable Message Sign TMCC: Traffic Management and Control Centre TL: Traffic Light RSU: Road Side Unit PSAP: Public Safety Answering Point

Map-centric automotive ecosystem supported by AI

Source: Prokop Jehlicka, SENSORIS, HERE Technologies

ISO TC204 ad-hoc working group on AI

Seoul Resolution 1265:

➤ ISO/TC 204 resolves to create a new "AI (Artificial Intelligence) ad hoc group" focused on "The impact of AI on ITS and the identification of standards that ISO/TC 204 will seek to develop". The ad hoc group will provide reports to each ISO/TC 204 plenary meeting and provide its final report at the ISO/TC 204 plenary meeting in the Autumn/Fall of 2019.

- > The convenor is **Mr. Dean Zabrieszach** (Australia)
- > APPROVED
- 2 Workshops held to date:
 - 1. Budapest September, 2018
 - 2. Kennedy Space Centre April, 2019

Further Workshop planned for Singapore Plenary in October, 2019.

Workshops have focused on greater understanding of AI, with presentations from:

- 1. Knut Evensen (Norway) Budapest
- 2. Mahmood Hikmet (New Zealand) Budapest

3. Andras Csepinszky (Hungary) – Budapest and Kennedy Space Centre

4. Young-Jun Moon (Korea) - Budapest and Kennedy Space Centre

5. Haruo Ozaki (Japan) – Kennedy Space Centre

6. William Diab (US) (in abstentia) - Budapest and Kennedy Space Centre

Interesting conversation and debate has centred on:

- 1. Meaning of AI and its relevance to ISO TC 204
- 2. Extent of work on AI already underway in JTC1 SC 42
- 3. Type of recommendation which might emanate in Singapore:
 - a. Create a new WG on A1, or
 - b. Allow existing WG's to undertake AI standards development, or
 - c. Create a Study Group which reports/presents to the TC on a regular basis & allow existing WG's to undertake AI standards development

Questions to answer – holistic approach needed?

Are there ITS/mobility specific AI standardisation needs? Let's focus only on weak AIs already available!

Road traffic has special requirements for products to be used on public roads – type approval, certification. What about legal requirements?

Are automotive safety (ISO 26262-11:2018) and Safety of the intended functionality (ISO/PAS 21448:2019) relevant? ISO TC22 is working on automated driving related safety?

Is there a need to standardise the interaction between in-vehicle AIs, RSU AIs, AIs implemented by mobile edge computing platforms, AIs in traffic management centres? Swarm intelligence concept? Ant colony algorithms?

Thank you! andras.csepinszky@nng.com