

ITU-T SG 17 Q10/17

Trust Elevation Frameworks

Abbie Barbir, Ph.D. ITU-T SG 17 Q10 Rapporteur

> Martin Euchner SG 17 Advisor

ITU Workshop on "Future Trust and Knowledge Infrastructure" July 1 2016

Contents

- Overview of Q 10/17, JCA-IdM
- What is trust elevation
- Trust elevation protocol and metadata
- FIDO example
- Future work and Conclusions

ITU-T SG 17 Question 10/17

- Q10/17 Identity management architecture & mechanisms
 Motivation for the Question
- Dedicated to the vision setting and the coordination and organization of the entire range of IdM activities within ITU-T
 JCA-IdM
- SG17 is "Parent" for Joint Coordination Activity (JCA) on Identity Management and Q10 manage the JCA
- JCA is a tool for managing the work programme of ITU-T when there is a need to address a broad subject covering the area of competence of more than one study group. JCA helps to coordinate the planned work effort in terms of subject matter, time-frames for meetings, collocated meetings where necessary and publication goals including, where appropriate, release planning of the resulting Recommendations

JCA-IdM Coordination with other bodies

Rec. ITU-T X.1254 Entity Authentication Assurance Framework

Example of Q10/17 work

Rec. ITU-T X.1254 : Entity Authentication Assurance Framework standardizes Levels of Assurance (LoAs) to promote trust, improve interoperability, and facilitate identity federation across organizations.

Provides a framework for managing entity authentication assurance in a given context.

Level	Description
1	Little confidence the asserted identity
2	Some confidence in the asserted identity
3	High confidence in asserted identity
4	Very High confidence in asserted identity

- specifies four levels of entity authentication assurance;
- specifies criteria and guidelines for each of the four levels of entity authentication assurance
- provides guidance concerning controls that should be used to mitigate authentication threats
- provides guidance for mapping the four levels of assurance to other authentication assurance schemes
- provides guidance for exchanging the results of authentication that are based on the four levels of assurance

Authentication Technology has stayed static

- Passwords
 - Users have Too many to passwords to remember
 - On Mobile devices are difficult to type
 - In general they are not secure

REUSED

PHISHED

KEYLOGGED

One Time Passcodes :Improve security, but not easy to use

Authentication Alternatives

Smart Keys

wearables

Facial Recognition

Smart Devices

(1) Fingerprint

(2) Iris

(3) DNA

(4) Keystroke pattern

- Implementation is the Challenge
- Each authentication solution requires new HW, SW, and Infrastructure

OASIS Trust Elevation (TE)

Trust elevation (step-up Authentication):

- Increasing the strength of trust (Auth) by adding factors from the same or different categories of trust elevation methods that don't share the same vulnerabilities
- There are five categories of trust elevation methods
 - who you are (biometrics, behavioral attributes),
 - what you know (shared secrets, public and relationship knowledge),
 - what you have (devices, tokens hard, soft, OTP),
 - what you typically do (described by ITU-T x1254, behavioral habits that are independent of physical biometric attributes) and
 - the context (location, time, party, prior relationship, social relationship and source).
- Elevation can be within the classic four X.1254 ITU-T LoA

Trust Elevation Core Model

A General Use Case For Trust Elevation

- An authenticated entity attempts access to a protected resource.
- The access control policy engine for that protected resource determines that the authentication assurance or information assurance for the attempt is insufficient.
- The entity is instructed to do an authentication 'step up' in order to satisfy the access control policy.
- The cycle repeats.
- One approach to characterize 'Trustworthiness' is to determine which authentication threats and threat vectors are mitigated by specific authentication factors based on X.1254

Challenges of Mobile Authentication

Mobile App Considerations

Application architecture

- Offline vs. online access
- Storage of information on device
- Various mobile OS
- Device ownership: BYOD or Corp Liable

Challenges to SSO on Mobile

- No standardized SSO
- Native Mobile apps vs. Web
 - Better user experience
 - Leverage local device capabilities
 - SaaS vendor-provided apps authenticate to SaaS backend systems
- Web App
 - Browsers lack access to native device E.g. Camera,
 - Browsers tend to be underpowered UI for small form factor devices

Mobile app security challenges:

- Broader coverage beyond VPN needed
- Check for malicious behavior and threats
 at app layer
- Continuous data monitoring and auth

Authentication Step-up and Metadata

- The goals of this work is :
 - propose Trust Elevation architectural patterns demonstrating the use of Trust Elevation in modern Access Control systems
 - Describe a common metadata set, mechanisms and protocol elements for Trust Elevation information exchanges.
 - Promote the use of Trust Elevation elements to foster standardization among the many technologies and approaches currently in use for credential & authentication risk mitigation
- Focus is in on
- Architecture and implementation considerations
- Relate TE to existing authorization models and patterns
- Provide guidance and examples to enable architects and implementers to use the TE approach in their protocols of choice

Scalable Continuous Authentication

Q10/17 Goals is to also work with FIDO Alliance to eliminate user name/password

- Support for a broad range of authentication methods, leverage existing hardware capabilities.
- Support for a broad range of assurance levels, let relying party know the authentication method.
- Built-in privacy.

FIDO Authenticators Example

Core Functionality

- Discover supported authenticators on the client
- Register authenticators to a relying party (and bind it to an existing identity)
- Authenticate (a session)
- Transaction confirmation

Conclusions

- Identity based services is a key technology for cloud based SaaS
- Online transaction requires means for identification of all parties involved in a transaction
- There need for open interoperable trust frameworks for IdM
- Identity Management continue to be a key security enabler for mobile and wireless interactions
- Protection of Personally Identifiable Identifiers (PII) is a required capability for IdM systems
- Need to eliminate the reliance on Password

Thank you!

Abbie Barbir Martin Euchner

