ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 2 Geneva, Switzerland 1 July 2016

Overview - Trust in ICT Infrastructure and Services

Gyu Myoung Lee ITU-T WP3/13 Co-chair, Q11/13, Q16/13 and Q4/20 Rapporteur LJMU UK/ KAIST Korea gmlee@kaist.ac.kr

Contents

- Introduction
- ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1
- Correspondence Group on Trust (CG-Trust) Activities
- CG-Trust Technical Report
 - ICT & Knowledge Society
 - Trust concepts and key technical issues
 - Architectural overview
- Strategies for Future Standardization on Trust
- Conclusion

Introduction

• Future ICT infrastructure

Creative, Trust and Knowledge Eco-Society

Q11, 16/13 living list – February 2014

Discovery

Knowledge for Education, Energy, Transportation, Nano and Bio Technology

Communication

Communication between human and devices Bridge between physical world and cyber world

Productivity

IT+energy, transportation, education, health, environments, etc.

Trust and Knowledge

Future trust and knowledge infrastructure

Creative
Knowledge
Eco-society
twork Wireline/Wireless Network Infrastructure for

ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1 (1)

- Phase 1 workshop 24 April 2015
- Aims of the workshop
 - Define the strategic and technical priorities for future ICT infrastructure;
 - Clearly identify the current socio-economic trends of markets and services driven by social networking services, mobile services and cloud computing platforms;
 - Articulate visions of the future Information Society, including the required form of infrastructure from the perspectives of knowledge and trust; and
 - Identify areas ripe for standards- development work to realize future trust and knowledge ICT infrastructure.

ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1 (2)

4 key sessions

- Data Science for the Knowledge Society
- Requirements and Expectations for Future ICT Infrastructure
- The "Open and Secure" Paradox
- Open Data Platforms

• Panel session: action plans for future ICT infrastructure

- What is trust? Different views on trust
- What is needed? SDO's views
- Action items A collaboration team (basic term, achieve trust)

Workshop programme: <u>http://www.itu.int/en/ITU-T/Workshops-and-Seminars/24042015/Pages/Programme.aspx</u>

ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1 (3)

• Key outcome

 — Q16/13 – Requested the creation of CG-Trust for preliminary work on trust standardization

Approved at the SG13 meeting on 1 May 2015

Planned the Phase 2 workshop

Challenges

- 1. Understanding of trust 7. Constraint
- 2. Trust relationships
- 3. Trust management
- 4. Measure & calculate
- 5. Decision making
- 6. Autonomy

environment

8. T-SCPI architecture

New business models
 10.Standardization

Gyu Myoung Lee, "Challenges for Trustworthy Social-Cyber-Physical Infrastructure," ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1, Apr. 2015.

ITU-T CG-Trust Activities

- Terms of Reference
 - Develop a technical report which contains:
 - Definition, use cases, functional classification
 - Challenges, technical issues related to trust
 - Overall strategies of standardization for trust provisioning
 - The lifetime: 1 year
- The CG-Trust reported its activities to the SG13 meeting (April 2016)

ITU-T CG-Trust Activities

- 7 CG-Trust meetings in total
 - 1st meeting (e-meeting, 17 June 2015): 4 contributions;
 - 2nd meeting (Geneva, 13 23 July 2015): 5 contributions;
 - 3rd meeting (e-meeting, 2 September 2015): 5 contributions;
 - 4th meeting (Geneva, 17-18 October 2015): 6 contributions;
 - 5th meeting (Geneva, 30 November 11 December 2015): 12 contributions;
 - 6th meeting (e-meeting, 24 February 2016) : 3 contributions;
 - 7th meeting (Geneva, 18 29 April 2015): 6 contributions.
- 41 contributions in total

ITU-T CG-Trust Activities

- CG-Trust Technical Report
 - The importance and necessity of trust toward knowledge societies;
 - Concepts and key features of trust;
 - Key challenges and technical issues for trusted ICT infrastructures;
 - Architectural overviews of trusted ICT infrastructures;
 - Trust based ICT service models;
 - Summary of use cases for trusted ICT infrastructures;
 - Strategies for future standardization on trust.

CG-Trust Technical Report

"Trust provisioning for future ICT infrastructures and services"

The blind men and the giant elephant

The localized (limited) view of each blind man leads to a biased conclusion

Xindong Wu, et. al., "Data mining with big data," IEEE TR on Knowledge and data engineering, Jan. 2014.

From Information to Wisdom

Challenges

CCITT/ITU-1

- How to collect these information?
- How to compute and storage these information?
- How to use these information?
- How about the relationship between these information?

ICT is a Basis of Knowledge Society

- ICT evolution affects the means of knowledge creation and processing
- If knowledge is exploited for malicious intentions, it could suffer from irreparable damage and uncertain dangers.
- Identify and prevent risks of knowledge in the complicated ICT infrastructure.

Potential risks in ICT infrastructures

• Risks on Data Integrity

- Maintain the accuracy and consistency of data.
- Risks of the **Operation of Systems**
 - The advent of S/W and H/W accelerates the deployment of autonomic processing and operation of systems.

Social Networking Risks

 False knowledge propagation gives rise to great confusion in societies.

Trust for future ICT infrastructures and services

• Trust

- A key issue in the processing and handling of data, as well as the provisioning of services which comply with users' needs and rights.
- The Aim
 - To create a trusted ICT infrastructure for sharing information and creating knowledge, and
 - To stimulate activities for future standardization on trust with related SDOs.

Increasing Intelligence

- Behave intelligently and rationally to
 - Sense real-world behaviour
 - Perceive the world using information models
 - Adapt to different environments and changes
 - Learn and build knowledge
 - Act to control their environments

Control vs. Trust

Trust Definitions

	Definitions			
Lexical-semantic	Reliance on the integrity, strength, ability, surety, etc., of a			
	person or thing; confidence			
	Reliance on and confidence in the truth, worth, reliability, etc.,			
	of a person or thing; faith			
General aspects	Trust is a measure of confidence that an entity will behave in			
	an expected manner, despite the lack of ability to monitor or			
	control the environment in which it operates.			
Psychology	Trust is considered to be a psychological state of the individu			
	where the trustor risks being vulnerable to the trustee based			
	on positive expectations of the trustee's intentions or			
	behaviour.			
	Trust is considered to have three aspects: cognitive, emotive,			
	and behavioural.			

	Definitions				
Computer	Trust in computer science in general can be classified into two broad				
Science	categories: "user" and "system". The notion of "user" trust is derived from				
	psychology and sociology, with a standard definition as "a subjective				
	expectation an entity has about another's future behaviour".				
	"System" trust is "the expectation that a device or system will faithfully				
	behave in a particular manner to fulfil its intended purpose".				
	System trust is "an attitude of confident expectation in an online situation				
	of risk that one's vulnerabilities will not be exploited"				
Specific context	Interpersonal trust is a relationship between a trustor and a trustee arising				
(Trust in IoT)	in uncertain and (potentially) risky situations, affecting trustors behaviour,				
	emotion and cognition. It is evoked by the perception of trustworthy				
	characteristics (such as ability, benevolence and integrity) of the trustee.				
	In the context of IoT, trust is reliance on the integrity, ability or character of				
	an entity. Trust can be further explained in terms of confidence in the truth				
	or worth of an entity.				
	Trust is an internal status of the user that may possibly become in the				
	users behaviour as well as in the users' affect and cognition and therefore				
	is partly accessible. Furthermore, trust is evoked by trustworthiness				
	characteristics of the technology.				
	Trust is "a user's confidence in an entity's reliability, including user's				
	acceptance of vulnerability in a potentially risky situation".				

Trust Definitions

CG-Trust Technical Report

- Trust is an accumulated value from history and the expecting value for the future.
- Trust is quantitatively and/or qualitatively calculated and measured, which is used to evaluate values of physical components, value-chains among multiple stakeholders, and human behaviours including decision making.
- Trust is applied to social, cyber and physical domains.

Relationship among security, privacy and trust with different aspects

Different views on Trust

Trusted ICT infrastructure

Attributes for Trust

Trust Characteristics (1)

- Trust is dynamic
 - As it applies only in a given time period and maybe change as time goes by.
- Trust is context-dependent
 - Trust applies only in a given context. The degree of trust on different contexts is significantly different.
- Trust is **not transitive** in nature but maybe transitive within a given context.
- Trust is an asymmetric relationship.
 - Trust is a non-mutual reciprocal in nature.

Trust Characteristics (2)

- Implicit
 - It is hard to explicitly articulate the confidence, belief, capability, context, and time dependency of trust.
- Antonym
 - The articulation of trust context in two entities may differ based on the opposing perspective.
- Asynchrony
 - The time period of trusting relationship may be defined differently between the entities.
- Gravity
 - The degree of seriousness in trust relationships may differ between the entities.

QoT and TLA among multiple trust domains

956(0)2016

CCITT/ITU-T

Interactions among entities for trust provisioning in a real world

CCITT/ITU-T

Key challenges for trust provisioning (1)

- Trust Relationship
 - Social trust among humans and things
 - From individual trust to community trust

Key challenges for trust provisioning (2)

- Highly interconnected ICT infrastructure

 A new kind of complex system
- Assuring continuous trustworthiness

 Trust is situation-specific and trust changes over time
- Scalability and complexity

CCITT/ITII-

- Trust, security and privacy become tightly coupled
- A unified approach towards trust, security and privacy co-analysis, design, implementation and verification
- Inter-domain trust provisioning

Social-cyber-physical trust relationships

Technical Issues (1)

- Trustworthy data collection and aggregation
- Trustworthy data process and analysis
- Trust metric and modelling
- Trust index
- Dissemination of trust information
- Trustworthy system lifecycle management

Technical Issues (2)

Trust management in a holistic manner

Technical Issues (3)

Trust metric

- A measure to evaluate a level of trust by which a human or an object can be judged or decided from trustworthiness.
- Key issue to describe qualitative and quantitative metrics across the domains, to determine the attributes in the different domains

Trust model

- A method to specify, build, evaluate and ensure trust relationships among entities.
- Used for the processing trust data.
- Key issue to select a suitable trust model for a particular domain.

Technical Issues (4)

Trust Index

- A composite and relative value that combines multiple trust related indicators (e.g., objective trust metrics and subjective trust attributes) into one benchmark measure
 - Similar to ICT Development Index (IDI) or stock market index.
- Used to compare trust among stakeholders when they create a new trust relationships or a trust value chain.

Architectural Overview

- The model developed in CG-Trust
 - Three different vertical domains (i.e., social, cyber and physical domains)
 - Three different horizontal components (i.e., humans & objects, networking & environment and data)
 - Multiple service domains for supporting a multiplicity of applications.
- Intends to illustrate the complex relationships and required roles for trust provisioning between and across domains which are associated with an individual entity of ICT infrastructures and services.

A Generic ICT Trust Model

CCITT/ITU-T

Architectural Framework

Use Cases – Summary

No	Use case	Purpose	Method
1	Trustworthy smart home service	Managing home facilities	Trustworthy home-related data → Providing personal information to service platform
2	Trustworthy smart office service	Managing office facilities	Trust level of users \rightarrow Determining facility usage right
3	Trustworthy document sharing service	Sharing document with appropriate users	Trust level between users → Determining authority of accessing document
4	Device selection for data transmission	Selecting trustful device for D2D communication	Trust level between devices \rightarrow Selecting appropriate device for transmission
5	Trustworthy car sharing service	Promoting trustworthy car sharing	Trustworthy data about a shared car and users' data → Providing an information of shared car and its user
6	Trustworthy used car transaction service	Mediating transparent used car transaction	Trustworthy data about a used car → Providing transparent car history information

Use Case – Smart Home Service

Enables users to monitor and manage the home appliances remotely and safely.

Use Case – Smart Office Service

Allows users utilizing various facilities in office based on the trust level of users.

Use Case – Document Sharing Service

Sharing the document among co-workers using social trust value among them.

Use Case – Device Selection for Data Transmission

Selecting the device for data transmission in multi-hop Device-to-Device (D2D) environment using social trust value among devices.

Use Case – Car Sharing Service

Provides reliable transaction in consideration of trustworthiness of users and cars.

CCITT/ITU-T

Use Case – Used Car Transaction Service

Buying a used car in trustworthy procedure.

Strategies for Future Standardization on Trust

Trust Standardization (1)

- ITU-T SG13 Correspondence Group on Trust
 - Started new work on future trusted ICT infrastructures to cope with emerging trends in ICT while also considering social and economic issues.
 - Completed to develop a technical report on trust provisioning for future ICT infrastructures and services.

Trust Standardization (2)

- Other SDOs
 - Until now, focusing on network security and cybersecurity
 - To be expanded to take into consideration trust issues
 - Online Trust Alliance, Trusted Computing Group
 - Still limited to social trust between humans
 - Further consideration on trust between humans and objects as well as across domains of SCP and services

Future Standardization on Trust (1)

- New work Items on Trust in ITU-T
 - Overview of trust in ICT;
 - Service scenarios and capabilities;
 - Requirements for trust provisioning;
 - Architectural framework and functional architectures;
 - Technical solutions for trust provisioning;
 - Trust provisioning for convergence applications;
 - Trust provisioning for cloud computing.

Future Standardization on Trust (2)

- Incorporate trust issue into related SGs activities in ITU-T
 - SG17: A liaison with SG17 activities on security matters
 - SG20: Trust in IoT applications, services and platforms as well as smart cities infrastructure
 - Others: The identification issue with SG2, trust in financial services with Focus Group on Digital Financial Services
- Closely collaborate with other SDOs
 - Existing security solutions: IETF, W3C
 - IoT: oneM2M, FI-WARE, Open Connectivity Foundation, AllSeen Alliance
 - Cloud Computing: TCG, Cloud Security Alliance
 - Other groups: OTA

ITU-T Next Study Period – 1

- SG13
 - Future networks, with focus on IMT2020, cloud computing, big data and trust in ICT
- Lead study group on
 - Future networks
 - IMT2020 networks (non radio related) including softwarization
 - Mobility management
 - Cloud computing/big data and trust in ICT

ITU-T Next Study Period – 2

- Question G/13 Knowledge-centric trustworthy networking and services (Continuation of Question 11/13 and 16/13)
 - Development of new Recommendations related to:
 - Knowledge-centric trustworthy networking and services;
 - Environment-aware networking and services for reducing energy consumption and energy efficiency management;
 - Socio-economic aware networking and services for trusted ICT infrastructures;
 - Interworking between other networks (including specific networks, e.g., networks for vehicular, smart grid and healthcare, etc.) and services considering heterogeneous and constraint networking environments in end user side;

 End user networks and their specific applications/services in end users perspective (e.g., enhancement of home networks, personal area networks, etc.).

Conclusion

Trust considerations as an important item for standardization

• ITU-T

- Lead future knowledge societies in terms of standardization.
- Initiate new work methods for future knowledge information infrastructures including pre-standardization and conceptual framework.
- A strong leadership to collaborate with private sectors and academia which are outside of ITU-T.

CCITT/ITU-T