ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 2 Geneva, Switzerland 1 July 2016

New Value Chains and Technical Issues for Future Trusted Information Infrastructure

Jun Kyun Choi

Professor, Korea Advanced Institute of Science and Technology (KAIST) jkchoi59@kaist.ac.kr

Value Chains of Trust

Meaning of Communication

New Value of Trust

- Physical Trust (more than QoS/QoE → QoT)
 - Availability: operations of technology and system
 - **Controllability**: system, devices, platform, applications software
- Cyber Trust (more than security)
 - Correctness and safety on on-line data transactions
 - Credibility on Cyber-Physical-System (CPS) including IoT and Cloud
- Social Trust (more than privacy)
 - Belief, confidence, and reputation on social behaviors
 - Protect human errors and mistake

(Example)

Value Chain of Existing Markets - 1

CCITT/ITU-T

(Example)

Value Chain of Existing Markets - 2

(Example) Value Chain of Existing Markets - 3

(1956) 2016) ccitt/itu-t

9

(ref) http://www.slideshare.net/AndreasMai/digitization-of-the-automotive-industry-connecting-the-new-mobility-value-chain

Evolution of Sharing Economy

The sharing economy life-cycle

http://www.pwc.co.uk/issues/megatrends/collisions/sharingeconomy/ the-sharing-economy-sizing-the-revenue-opportunity.html

New Social Economy

Social Graph for Supply Chain

CCITT/ITU-T

Value of Data Trust

CCITT/ITU-T

Open Innovation for New Value Chain

- Open Networking and Open Innovation is key strategies
 - Open API: open valuable data through APIs which is attractive, 3rd parties invested in, finally fair licensing and rewards
 - Collective Intelligence: accelerate external innovation as more deliberate and consistent way of an open call, or partnership for technology innovation
 - Excellence: specialize some new technologies or methods while ensuring standardization and governance among community
 - Smart Agent: agent with know-hows provides guideline, advice, and solutions
 - Business Support: viable technology to business in sustainable manner
 - Incubator: funding for new ideas and technology innovation
- ICT infrastructure is essential for future knowledge society
 - (Product) More sophisticate products and complicate solutions
 - (Technology/Platform) Viable technology and service platform
 - (Human) Collaborative learning of human capability among peoples

Technologies for Future Value Chain

Technical Issues for Trust Provisioning

Key Technical Issues on Trust Provisioning

- Technical Issues for Trust Information Infrastructure
 - Network architecture for trust provisioning
 - Delivery protocol for trust provisioning
 - Algorithm and solutions for trust provisioning
- Trust Provisioning on ICT Services and Applications
 - Trust provisioning on IoT applications
 - Trust provisioning of cloud applications
 - Trust provisioning on convergence applications (e.g., health, energy, etc.)
 - Trust provisioning for human life and business
- Market and Deployment Issues relating to Trust
 - Trade-offs on cost per benefit among trust, privacy and security
 - Step-wise deployment of trust markets

Network Architecture for Trust Provisioning

How to build Trust Domain

- Who: human, server, device with relevant id (name, key, IP address)?
 - Scalability: how many peoples, server, and devices
 - Granularity: detailed behaviors and information flows
- When: at instance or at later time to verify trust
 - Frequency : how many times per hours
 - Levels: physical layer, cyber layer and/or social layer
 - Instance: a time to send, access, receive, handover, register, on/off
- Coverage: closed/multiple geographical area or open virtual domain
 - Extension: Secured tunnels to remote location or among multiple domain
- Action or Execution: at the interface like firewall or DPI system
 - Access permission, block, warning, monitoring, and/or notification, etc.

Communication Protocol for Trust Provisioning

- Trusted Information Infrastructure for Data Trust
 - Key Requirements for Data Trust
 - No extension of existing data delivery protocols
 - No change of existing security protocols
 - Strategies on Protocol for Data Trust
 - Separate or out-of-band management protocols to monitor, inspect, collect, and/or analyze level of trust
 - Action: access control, notify, and change data flows
- Application Procedures for Cyber or Social Trust
 - Key Requirements for Cyber and Social Trust
 - No change of existing applications (e.g., email, SNS, web browsing, database, etc.)
 - Add-on functions may be optionally or selectively
 - Strategies on Protocol for Cyber and Social Trust
 - Insertion of specific checking code on applications procedures

Separate or out-of-band management protocols for trust certification

Algorithm and Solutions for Trust Provisioning

- Key requirements for algorithm and solutions
 - Competitiveness or harmony with security solutions
 - Good adaptability among multiple stakeholders
 - Good flexibility for future add-on features
- Key direction for trust provisioning
 - Consider mobile in nature (i.e., smartphone, smart pad)
 - Regardless of geographical or physical locations
 - − Simple is beauty! \rightarrow future safe
 - Focus on simple trust zone if possible
 - via id, address, name, membership or bio information, etc.
 - with trust server, trust gateway, trust thing, and trust object, etc.

Trust Provisioning on IoT Applications

- Device Trust
 - Sensor reliability/availability: failure, battery low, malfunction, etc.
 - Data assessment: correct values on temperature, time, and location
- IoT Data Trust
 - OAM&P: ownership of control and management according to value chain
 - Data protocol: query, get, put, post, and delete, etc.
- Context-aware IoT Trust
 - Operation: context-aware information from a lot of sensors (e.g., fire, alarm, emergency, illegal, violation, etc.)
 - Application: share values and benefits from data analytics
 - at right time, right location, and right actions, etc.

Trust Provisioning of Cloud Applications

Trust on cloud platform

- Trustworthy data delivery and access with SaaS/PaaS concepts
- On-demand data protection and privacy

Operation and Management Trust

- Responsibility : who, when, what, where, and why
 - Ownership for access, process, and management of cloud data
- Trust management : access and handling procedures
 - Trust management of cloud platform with policy and governance
 - Proper and valid data with robustness and redundancy

• Application Trust

- Trust index according to value chains of cloud eco-system
- Trust provisioning on cloud applications (without additional certification)

Trust Provisioning on Convergence Applications

- Trust on heterogeneous physical systems (energy, transport, health, etc.)
 - Performance and Availability: more strict QoS on delay, throughput, and failure
 - Control and Management: safe and acceptable operations of resources
 - Protocol: error tolerant and very low latency as well as data security
- Trust provisioning with experiences and know-hows
 - Trust accumulation of human behaviors
 - Operational experience and know-hows with accumulated history
 - Rule and procedure for trust refinement and adjustment
 - Trust learning mechanism by utilizing neural network concepts
- Trust applications among multiple stakeholders
 - Trust index and trust assessment (based on history, reputation, etc.)
 - Trust negotiation, trust value chain, and trust relationship

Trust Provisioning for Human Life and Business

- Rethink about human right and justice
 - Future cyber society is artificial society based on ICT infrastructure
 - Review regulations and laws of existing society
 - Sometimes, the existing regulation may be not relevant
 - Consensus for future knowledge society are needed
- New Regulation for Future Trust Eco-Society
 - Trust governance
 - Global governance are needed (logging, tracking, certifying, etc.)
 - New distributed trust authority like blockchain may be considered
 - Trust for human life and social community
 - Some privacy data may create new eco-system with acceptable governance

Key Technical Issues Trade-offs among Trust, Privacy and Security

- Values of Security → not enough to protect value chain among multiple stakeholders
 - Impossible to handle or intervene all the data and human transactions → who pay for?
 - Minimum level of security may be regulated by governance, but
 - The minimum level is depending on applications → Who define the level of secure data ?
 - Good protection of cyber terror or crimes → detail surveillance may remind "George Orwell 1984"
- Values of Privacy → Dual or multiple personality (e.g., Dr Jekyll and Mr Hyde)
 - Who and why protect privacy ? \rightarrow by owner or governance
 - If owners (or me) allow private data to open,
 - Nobody may be claimed in nature ightarrow But, who know unexpected problem ?
 - Governance gives regulation by consensus (like young people under 19)
 - News and on-line journalism may be intentionally linked to invoke user preferences
- Values of Trust → Trust Index based on consensus or credit accumulation
 - Difficult to handle all the trust metrics with security and privacy together
 - How to handle more than million cases ? \rightarrow Simple trust index like stock market index is more relevant
 - Create new trust economy by Trust Index
 - Establish trust value chain and trust relationship (e.g., Carbon Emission Trading, etc.)

Step-wise Deployment of Trust Eco-system

- 1st Stage: create individual and separate Trust Islands
 - Collaborative trust economy combined with IoT and Cloud Solutions
 - Fintech solution equipped with IoT Trust
- 2nd Stage: Linked to Value Chain among Trust Islands
 - Trust platform for multiple stakeholders (energy, transport, health, safety, etc.)
 - Convergence applications with Trust → Energy+ICT, Health+IT, Transport+ICT, etc.
 - Collaborate energy market among consumer, provider, and retailer, etc.
 - Trust economy on transport/logistics market among bus, truck, railway, ship, etc.
- 3rd Stage: Deploy global trust governance based on Trust Index
 - Global cyber trading with trust (e.g., e-commerce, Fintech, banking, etc.)
 - Establish global trust agency, trust authority, trust gateway, etc.
 - Realize trust governance at global domain

ITU-T Standardization Strategies of Trust

Toward Knowledge Society

- Rule and principles for future knowledge society
 - Magna Carta (Great Charter of Freedom): Year 1215
 - Democracy, Republic (Governance): Roman, Europe (year 1800 ~)
 - ??? (Collective Intelligence, Collaborative): Year 2000 ~
- Knowledge society means
 - Knowledge is invisible public good available to every individual
 - Foster universality, liberty, and equality as a concept of openness
 - Changes of education, science, culture, and communication
- Empowerment of ICT technology and standardization
 - Identification of data, object, system, device, event, and human, etc.
 - Format and structure of data, Information, and knowledge
 - Platforms or solutions to access, deliver, process, share and accumulate

Why ICT infrastructure need Trust ? - 1

- Knowledge Society is Risk Society ?
 - Do not open Pandora's Box
 - By making ICT resources accessible to all the people with promises but with Unknown Dangers
 - If spread of knowledge is accelerated, self-regulating capability of the society is also boosted.
 - New character of the risks threaten us to cope with complexity of interaction and mechanism of ICT infrastructure
 - Find out the effective means of dealing with these complexity
 - But, instability and insecurity are consequences of scientific progress and technological innovation
 - Feel free the individuals from the fears and uncertainty to enable us to control risk

Why ICT infrastructure need Trust ? - 2

How to prevent Risks

- Risks are not equal and some are unacceptable
 - Risks taken intentionally or incurred passively
- New technological revolution is a great advantage for researchers to a vast amount of resources
 - But, impossible to identify risk beforehand

Risk Identification

- A matter of good governance
 - Undifferentiated flow of data is no value if we are unable to use it
 - Public and private authorities with technical and scientific abilities are needed

Why ICT infrastructure need Trust ? - 3

Risks on ICT Technologies

- The access of a large number of knowledge resources cause irreparable damage and create unpredictable dangers.
- The IoT/M2M systems have always proved unpredictable and fallible although it is not proof against breakdowns
- To protect misuse of knowledge falling into the hands of terrorist, scientists and engineers have a duty to protect the public-safety from hazards
- The growth of knowledge societies might need the most effective means to reduce risks and to share the benefits of ICT revolution

Standardization Strategies of Trust

- Consensus on Trust Information Infrastructure
 - New value chains on trust provisioning
 - Harmony with data platform and new knowledge eco-systems
- Architectural Framework and Trust Service Models
 - Evolution scenario of the ICT infrastructure for future trust eco-society
 - A lot of trust model and technical solutions with future flexibility
- Detailed Technical Solutions for Trust Provisioning
 - Value-added services and new eco-society for trust provisioning
 - Trust on sharing and collaborative Economy
 - Trust value chain among multiple stakeholders
 - Starting from IoT Trust and Cloud Trust to converged applications like energy, health, etc.
 - Focus on data-centric or user-centric trust applications
 - Current infrastructure and platform should be re-configured or realigned

Future Plan for Trust Provisioning at ITU-T

- Key Issues for next study period of ITU-T (2017 2020)
 - Collaborate among SG's to set up the related standard plans
 - International joint activities between De Jure standards and De Facto Standards including academia and forums
 - Technical standards create new value chain for future knowledge society
 - How to evolve the existing ICT infrastructure? otherwise, totally new infrastructure !!
- Trust Index
 - Like ICT Development Index or OECD index
 - Establish global trust governance to encourage new value chain for future knowledge society

Thank you!