ITUEvents

Demonstration of machine learning function orchestrator (MLFO) via reference implementations (ITU-ML5G-PS-024) Shagufta Henna, LYIT, 31 July 2020

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Sponsors Organizer

Register <u>here</u> Join us on <u>Slack</u>

Agenda

- Background
- Functionalities of MLFO
- MLFO Architecture
- Specific concepts: Sequence Diagrams
- Reference Implementation challenge
- Evaluation Criteria
- Participation & Submission Guidelines
- Timeline

Background

- Most network operators rely on data scientists to create a ML pipeline
- This ML pipeline if not managed and orchestrated appropriately is subject to bottleneck

Background (Cont..)

Specifically, MLFO addresses the following challenges:

• [b-ITU-T Y.ML-IMT2020-Use-Cases] envisages different ML frameworks/ libraries

Example: training of deep learning, tree-based, and linear models require three different ML frameworks

Example: different big data handling tools and libraries, e.g., messaging brokers, data processing engines, etc.

• ML pipeline using these tools/libraries is time-consuming and requires a set of specialized skills

Background (Cont..)

- Compatibility issues for integration of [b-ITU T FG-ML5G-I-151] [ML5G-I-203], and [ITU-T Y.3174] need repetitive/complex code
- Lack of standardized ML orchestration mechanism:
 - complex/expensive ML pipelines
 - handover issues, e.g., bottleneck
 - production issues, e.g., glue code, hidden-dependencies, feedback loops, and pipeline nets
- Other challenges for ML pipeline include:
 - ML model update, chaining, monitoring, evaluation, pipeline splitting, model deployment, and management &coordination of multiple ML pipeline instances across the network

Background (Cont..)

- Uber, Netflix, Google, Facebook, and Airbnb: in-house ML orchestration platforms
- Cloud service providers, e.g., Amazon and Google: ML pipeline orchestration services
 - Do not address requirements of diverse use cases [b-ITU-T Y.ML-IMT2020-Use-Cases]
 - Do not offer integration with [ML5G-I-203], [b-ITU T FG-ML5G-I-151], and [ITU-T Y.3174] frameworks
- In-house ML orchestration: significant investments & no actual benefits within an industry setting.

MLFO Functionalities

Functionalities of the MLFO:

- MLFO can monitor & manage ML pipeline
- Policy-based ML pipeline deployment
- Optimal placement of ML pipeline nodes in the network
- Intent-based specification

- Standard representation & interoperable integration of data handling [ITU-T Y.3174], [b-ML5G-I-148], and ML marketplaces [ITU-T Y.ML-IMT2020-MP]
- Chaining/split of ML pipeline nodes, selection of ML models, monitoring model performance, reselection and update
- Like NFVO, MLFO decouples ML functions from the underlying network NOTE- This reduces ML pipeline operational costs with accelerated new offerings

Requirements for MLFO

High-level requirements of MLFO:

- 1. Model Management
- 2. Data Management
- 3. ML Pipeline Management
- 4. Closed Loop System
- 5. Intent and Policy Management
- 6. Communication Management

1. Model Management

2. Data Management

< lyit

4. Closed Loop System

5. Intent and Policy Management

6. Communication Management

: Simulated Network Functions

- : Data Management Module
- : Model Management Module

Specific concepts: Data Collection

Specific concepts: Data Pre-processing

Specific concepts: Model Training

Specific concepts: Model Selection

Specific concepts: Optimization Flow

Specific concepts: Model Deployment

Specific concepts: ML pipeline creation

Specific concepts: ML Pipeline Testing

Specific concepts: ML sandbox-assisted model training/retraining

Specific concepts: Model update in marketplace

Specific concepts: Asynchronous operation execution

MLFO Reference Implementation Challenge

Implementation of specific concepts including:

- Handling ML Intent from operator: a mechanism for operator specify ML use cases via the ML Intent as specified in [ITU-T Y.3172]
- Control of model management, e.g., selection, training and deployment using MLFO

NOTE- No dataset is required for the model management implementation, only meta-data should suffice

- Interaction with ML Marketplace
- Handling of asynchronous operations
- Any other concepts as discussed earlier

Evaluation Criteria

Our competition schedule is divided into two stages: Phase I and Phase II. These two stages need to submit different competition works.

Phase I

Phase II

Project (full marks: 40)	Evaluation Standard	Project (full mark:	Evaluation Standard
Selection of concept demo (10 marks)	 Clarity of demo statement Traceability to ITU-T specifications. Proof of concept demo plan Clarity in demo goals 	60) Report and PPT (20 marks)	Detailed report including: i) Demo problem statement, ii) Motivation, iii) Challenges, iv) Milestones achieved, v) Methodology: system design, flow chart, vi) Results and discussion vii) Conclusion
(15 marks)	Use case diagram/flow chart Architecture diagram Opensource used	DEMO completion (40 marks)	Demonstratable solution: PoC which maps to the MLFO specification is a must. Points to take care: Flexibility in possible extensions, potential adaptations and
Test Setup & Timeline (15 marks)	1. Details of the test setup Tracing to requirements and design.		integrations, complete scenario.
Total	40 marks	Total	60 marks

Participation & Submission Guidelines

- 1. Create an <u>ITU account</u> for challenge registration
- 2. <u>Register</u> for ITU AI/ML in 5G
- 3. Complete the <u>ITU AI/ML in 5G Challenge Participants Survey</u> with **ITU-**ML5G-PS-024
- 4. You can work as an individual or a team of maximum 4 members
- 5. A **GitHub repository** should be available shortly to host the code from contestants

All the information here: <u>https://www.lyit.ie/LYIT-ITU-T-AI-Challenge</u>

Timeline

Registration Deadline: 21st August 2020

Global Round duration: August - November 2020

Phase I submission: 20th September 2020

Phase II submission: 20th October 2020
Evaluation: October 30th- November 15th
Winners (top 3) official announcement: November 30th
Awards and presentation: December

Thank You

Q&A

ITUEvents

AI/ML in 5G Challenge: "Round table + Open house" 07 August 2020

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Sponsors

Organizer