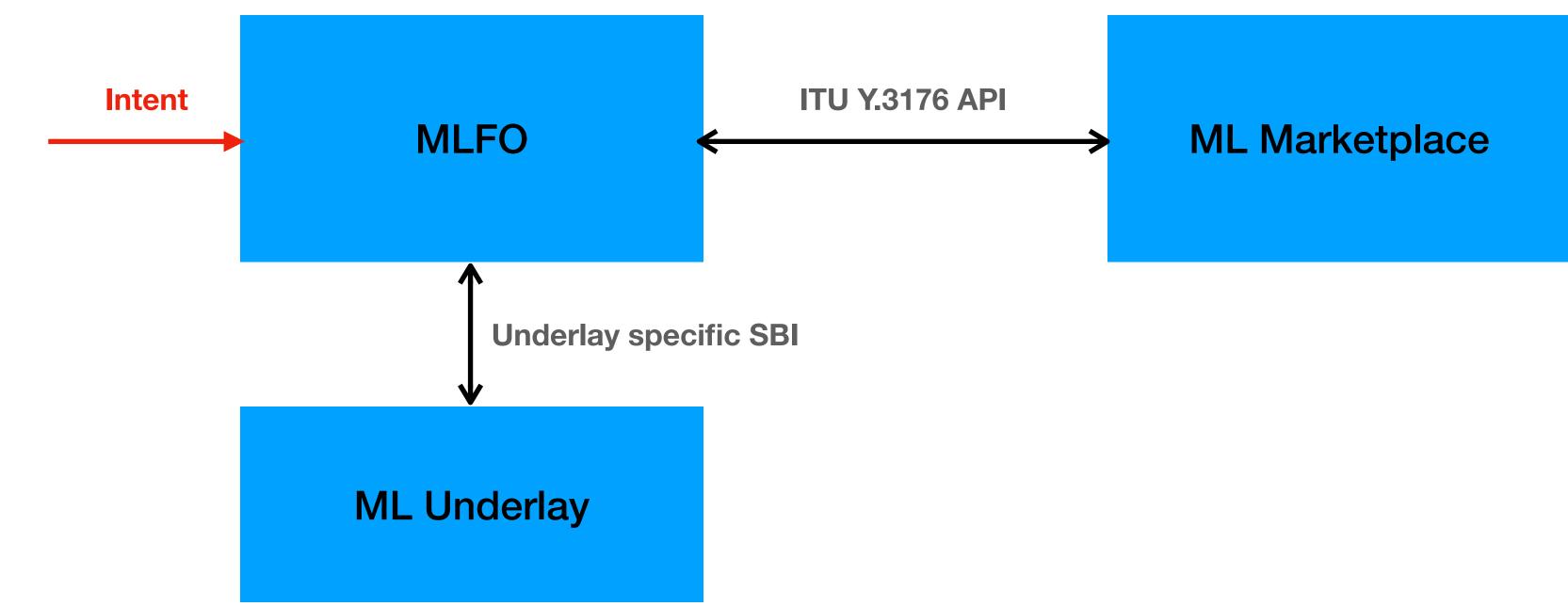
MLFO Demonstration using Reference Implementation Final presentation

Abhishek Dandekar < <u>dandekar@campus.tu-berlin.de</u> >

15 December 2020

Background

Machine learning function orchestrator **Overview**


- Defined in ITU-T Y.3172
- ML use cases are fed to MLFO via intent
- Based on intent MLFO performs-
 - Model management
 - Data management
 - Pipeline management

Orchestrates ML pipelines in the network by interacting with ML underlay

Source: ITU-T Y.3172 https://www.itu.int/rec/T-REC-Y.3172-201906-I/en

Machine learning function orchestrator Figure

Challenge Demonstrate following MLFO capabilities

- Handle input intent
- Model selection
- Fetch model from ML Marketplace
- Interact with ML underlay

Solution

A minimal implementation of MLFO using open-source components

Intent Handling

- Operator can specify input intent in a yaml lacksquare
- Intent may describe: \bullet
 - Operator use case (e.g edge/cloud/distributed) \bullet
 - Target application which uses the generated insights (e.g RAN-CU)
- Based on the intent, model requirements are generated

Model selection/Model fetch

- ML marketplace is queried with generated model requirements
 - Ideally Acumos, currently using custom db
- If a matching model is found, it is fetched from the ML marketplace
- This is aligned with API described in ITU-T Y.3176

Source: ITU-T Y.3176 https://www.itu.int/rec/T-REC-Y.3176-202009-P

Interaction with ML underlay

- MLFO queries the ML underlay about availability of following resources:
 - Number of clusters available for training
 - nGPUs in training cluster
 - Number of clusters available for inference
 - nGPUs in inference cluster

Additional features Intelligent resource allocation algorithm

- MLFO can have a global overview of GPU resources across network
- It can allocate set of GPUs for a given ML job by factoring-
 - Location of source / sink nodes \bullet
 - Network characteristics e.g Latency/Bandwidth
 - Model resource requirements for training/inference
 - Policy set by the operator

Future extensions

- MLFO can be integrated with-
 - ONAP DCAE to centrally orchestrate ML apps
 - ORAN Non-RT RIC to orchestrate ML apps in RAN
- Smart MLFO-
 - It can adapt its functionalities according to the dynamic network
- MLFO could be extended to use in hierarchical fashion for granular control

Host Feedback Incorporation

- Add references to ITU specifications
 - Added references to ITU Y.3176
- Add new scenarios and future work
 - Added new scenarios and future work

Thanks! Questions?

~/ituDev/MLFO-Solution_xx01 — -zsh

/Users/ab/ituDev/MLFO-Solution_xx01 \$ docker-compose up

MLFO-Solution_xx01 — -zsh — 130×35

~ — -zsh

~/ituDev/MLFO-Solution_xx01 — -zsh

\$

