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Abstract

Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and
computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds
in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building
such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be
customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are
generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power
and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio
environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films
of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces),
which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart
radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity,
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Current Wireless Networks: No Control of Radio Waves

dIn conventional networks:

QO We wusually perceive the environment as an
“unintentional adversary” to communication

O We usually optimize only the end-points of the
communication network

d We have no control of the environment, which is
viewed as a passive spectator: we just adapt to it

... WHAT IF ...
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Smart Radio Environments

Smart Wireless

... from adaptation to ...

Control & Programmability
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Radio Environments

Adaptation: End-Points Optimization
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Radio Environments

Adaptation: End-Points Optimization

Radio Environment

Wireless

Environment (H)

\ \ 4

N End-Points ” e
= Optimization: e
max{f(Tx,Rx)}
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Control & Programmability: Joint Optimization
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Smart Radio Environments

Control & Programmability: Joint Optimization

Smart Radio Environment
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Smart Radio Environments

Smart Wireless

... from adaptation to ...

Control & Programmability
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ML/AI RIS (metasurface)
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The Technology: Reconfigurable Intelligent Surface

d NTT > Business P Japanese Search Keyword
oco o » About Us  » docomo Shop

» Internet » Contact Us

Products Services Charges Support Area

Home > News & Notices > Media Center > Press Releases > 2020

Press Release » News & Notices

» Media Center
January 17, 2020

DOCOMO Conducts World's First Successful Trial of Transparent Dynamic

* Press Releases

Metasurface
— Dynamic wave manipulation and high transparency expected to optimize 5G network > 2020
construction —
> 2019
> 2018

TOKYO, JAPAN, January 17, 2020 --- NTT DOCOMO, INC., working in collaboration with the global glass
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The Technology: Reconfigurable Intelligent Surface

Metasurface-Based RIS
(transparent and dynamic, Jan. 2020)

Prototype
transparent dynamic

Conventional metasurface metasurface

Approx. 2Zmm

Prototype of transparent dynamic metasurface
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The Technology: Reconfigurable Intelligent Surface
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The Technology: Reconfigurable Intelligent Surface

... to Smart Reflections

(O

reflection

N\ . L
, \ Generalized Snell’s Law
G)reflection\
'\= G)incidence \/
eincidence / S

36



The Technology: Reconfigurable Intelligent Surface
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The Brain & Algorithms: Artificial Intelligence
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Reconfigurable Intelligent Surfaces
(RISs)



What is an RIS 7
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What is an RIS 7 ...A New Antenna Technology for 6G

6G

The Next
Hyper—Connected
Experience for All.

July 14, 2020

Novel Antenna Technologies

SAMSUNG

- Reconfigurable intelligent surface (RIS) can be used to provide a
propagation path where no LoS link exists [25]. An example of signal
reflection via RIS is illustrated in Figure 12.

Reconfigurable intelligent surface (RIS)

Car @

Mobile device

BS

Figure12
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What Wave Transformations Can an RIS Apply ?
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What Wave Transformations Can an RIS Apply ?

reflection refraction absorption focusing
I I I
i I I
/
polarization splitting analog processing collimation

B2 & X
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How Does an RIS Look Like ?
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How Does an RIS Look Like ?

Univ. California
San Diego
MobiCom 2020

Aalto University |
Physics Appl. 2017 §

Southeast

University
TWC 2020

Prototype
transparent dynamic

100X 102 unit cells
Conventional metasurface metasurface

350X 35.7). @10.5 GHz B cozoac

= mEEEEd
I
B
FE 5

Approx. 2mm

Docomo 2020
S 1.02m _ Transparent Metasurface

Tsinghua University
Access 2020




Reconfigurable Intelligent (Meta)Surfaces

Conceptual Structure



Reconfigurable Intelligent (Meta)Surfaces

Conceptual Structure
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Reconfigurable Intelligent (Meta)Surfaces

Conceptual Structure and Operation

rsuper-cell - - unit cell ) tunable element layer substrate
: i ¢ :
24 Vo e s A, e s e s e A
4 AN NG p NN\ NN\ > -
‘4 x o &P -‘-, o & a0
-" ENG—IENG— NN\ NN T— N\

. .
AN NN T W . NN\
,/ﬁ--ﬁ-ﬁ-lﬁ g

configuration
network

sensin
7_,/ g

element

|
! processing micro radio-frequency

I unit controller chain

communication interface with the external world

e o o -



What is an RIS Useful For ?
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What is an RIS Useful For ? ... RIS-Empowered Wireless

M. Di Renzo et al., “Smart Radio Environments Empowered by RISs”, arXiv:2007.03435



Enhancing Coverage, Rate, Security Through RISs

(a) RIS-enhanced cellular networks bevond 5G

RIS_enhanced mobile RISs in SWIPT networ
edge computing

~ (b) RIS-assisted indoor communications
s/energy

RIS-enhanced
mmWave
communication
networks

RIS-enhanced LiFi
communication
networks

RIS-enhanced NOM.
- Eavesdropper petworks

7
— = ¢
- “;e':‘l_:r:s“b“d | RISsin intelligent
RISs in UAV-enabled [ factory RISs in intelligent wireless

[} sensor networks
RISs in cell
/ connected TSIy

@ RISsin vehicular
networks

A L , A
J| ceing' it ol R B0

[RISs in intelligent. %
| agriculture

R TR TR T

Y =
#2 % robotics team

(c) RISs in unmanned systems for smart city (d) RISs in intelligent IoT networks

Y. Liu, M. Di Renzo et al., “RISs: Principles & Opportunities”, arXiv:2007.03435 54



What Does Make an RIS Different ?
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Nearly-Passive Design / Implementation
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Nearly-Passive Design / Implementation

7 =
Normal Operation Control & Configuration
Phase Phase

— 7
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What Does Make an RIS Different ?

Nearly-Passive Design / Implementation

Yl =
Normal Operation Control & Configuration
Phase > Passive Phase
_ 7

0 An RIS is neatly-passive if the following three conditions are
fulfilled simultaneously:

QO No power amplification is used after configuration (during the
normal operation phase)

0 Minimal digital signal processing capabilities are needed only to
configure the surface (during the control and programming phase)

0 Minimal power is used only to configure the surface (during the

control and programming phase) 58



What Does Make an RIS Different ?

&« C @& pivotalcommware.com Q % 0 6
DIVD | /\I_ About Products News & Events Careers Contact
COMMWAIRE®

-

Inventors of Holographic

Beam Forming®
Essential Element in the 5G Ecosyst

5Gis PINVOTAL™

Click Here to
watch Pivotal's
live

demo from
Mobile World
Congress Los
Angeles 2019.
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Example of Power Consumption
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What Does Make an RIS Different ?

Example of Power Consumption

Phased RIS

Array HBF Unit
Number of Unit Cells 256 640 #
Antenna Gain 28 26 dB
Number of RF chains 256 1 #
Transmit Power per chain 6.2 2512 mW
Total RF Transmit Power 1.58 2.51 W
Power Added Efficiency 4.0% 25.0% %
DC Draw for RF 39.6 10.0 W
HBF Controller 0 2.9 W
Total DC Power 39.6 12.9 "'}
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Example of Power Consumption

Phased RIS
Array HBF Unit
Number of Unit Cells 256 640 #
HBF Controller 0 2.9 W
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What Does Make an RIS Different ?

Example of Power Consumption

Phased RIS

Array HBF Unit
Number of Unit Cells 256 640 #
HBF Controller 0 2.9 W

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.
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What Does Make an RIS Different ?

Example of Power Consumption

Phased RIS

Array HBF Unit
Number of Unit Cells 256 640 #
HBF Controller 0 2.9 W

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.

... no free lunch rule ...
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What Does Make an RIS Different ?

C-SWaP

g— - \.\
: RN " "
gﬁrest '-Ggst,

- Size Weigh .

)
dl U FOWE

Consumption

For these reasons, RISs may constitute an emerging and
promising software-defined architecture that can be realized

at reduced cost, size, weight, and power (C-SWaP design)
65



What Does Make an RIS Different ?

C-SWaP Docomo 2020
Transparent Metasurface
o al '
A trans::::?::namlc
' Conventional metasurface metasurface
&est‘@ggt o o o |
FE| 1
ahd.Powe FE| L
Consumption s
n N - — pprox. 2mm

Sustainable wireless design (e.g., low EMF exposure) without
generating new waves and possibly made of physically &

aesthetically unobtrusive and recyclable material
66



Joint Active & Passive Wireless Networks Design

e S e e

Building

Active HoloS connectionss

(((]m)))

communication
y Physical security.

1 Enhancing
1

--------L----

“RISs can  fundamentally
transform  today’s  wireless
networks with active mnodes
solely to a new hybrid network
comprising active and passive
components co-working in an
intelligent way, in order to
achieve a sustainable capacity
growth with low and affordable
cost and power consumption”

C. Yuen, M. Di Renzo et al., “Holographic MIMO Surfaces for 6G”, arXiv:1911.12296
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Machine Learning



Wireless Networks Design in the Era of ML

MODEL-AIDED WIRELESS
ARTIFICIAL INTELLIGENCE

Embedding Expert Knowledge in Deep Neural Networks
for Wireless System Optimization

& . .

M. Di Renzo et al., Special Issue on 6G, Veh. Technol. Mag. 2020 (arXiv:1808.01672)



The Question
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The Question (...from a wireless perspective...)

What can machine learning do for
communication theory ?
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The Question (...from an ML perspective...)
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What can communication theory do for
machine learning ?

~

J
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The Question

/

\_

Can we merge theoretical models
with data-driven methods
taking the best of both worlds ?

~

J
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input Wireless output

Network
Optimization

1 Given some input

1 We wish to compute the optimal output
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Optimization in Wireless Networks

input Wireless output

Network
Optimization

1 Given some input

1 We wish to compute the optimal output

d'That optimize the network performance
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Optimization in Wireless Networks

input Wireless output

Network
Optimization

B Computing the
y2 =F (X2 ) — optimal mapping F
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“Learning to Optimize” Wireless Networks

... the “conventional” data-driven approach ...

Live Data

Measurements Optimal

Resource

Allocation
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“Learning to Optimize” Wireless Networks

... the “conventional” data-driven approach ...

Live Data

Measurements Optimal

Resource

Allocation

O Lots of data & interpretation of data

1 Brute-force optimization



How About the Quality of Data and Bias ?

More on Bias: Survivorship Bias in Subsurface Modeling?
Michael Pyrcz, University of Texas at Austin (@GeostatsGuy)

Example shared in my Introduction to Geostatistics class by @uddhav_marwaha (Twitter).

Survivorship Bias: a form of selection bias resulting from selecting
samples that “survived” some previous selection process. This often leads
to false conclusions. For example, in WWII the Center for Naval Analyses
(@CNA_org Twitter) compiled a dataset of bomber damage to assess
where reinforcement was needed. Statistician Abraham Wald recognized
this was a case of survivorship bias. The plans shot in critical locations did
not return to base. Wald suggested reinforcement of locations that were
not damaged in planes that safely returned to base!
(https://en.wikipedia.org/wiki/Survivorship bias#in the military)

Is there preselection in our subsurface datasets? For our subsurface
projects do we only sample: success cases, producing wells, drill holes
with economic ore grades, large fields, clastic depositional settings,
marine seismic surveys, high resolution 3D seismic surveys, shallow
reservoirs etc. When we pool samples, check for preselection and ensure
this is considered in the resulting inferences and decision to export these
results. The samples must be representative of the population to which
we will apply our model. Of course, this applies to any datasets.

avssssnnsr Recommended area
feerssnsay 10 reinforce

@] Bullet holes

HOW TO TACKLE
SURVIVOR BIAS

Hypothetical dataset of aircraft damage for planes that returned to based. Source
https://en.wikipedia.org/wiki/Survivorship_bias#/media/File:Survivorship-bias.png
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“Modeling to Optimize” Wireless Networks

... the “conventional” comm-theoretic approach ...

Optimal
Resource
Allocation

Optimization

Wireless Network .

Model
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“Modeling to Optimize” Wireless Networks

... the “conventional” comm-theoretic approach ...

Optimal
Optimization Resource
Allocation

Wireless Network '

Model

1 Non-convex mixed-integer optimization

1 Real-time implementation is “challenging”
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“Modeling to Optimize” Wireless Networks by ANNs

Optimal
Resource
Allocation

Wireless Network
Model
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“Modeling to Optimize” Wireless Networks by ANNs

Optimal
Resource
Allocation

Wireless Network
Model

 After training, computationally simple

d But, modeling mismatch is an issue

85



Modeling Assumption A, ... Modeling Assumption £

... excerpts from a paper of mine ...
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Modeling Assumption A, ... Modeling Assumption £

... excerpts from a paper of mine ...

Under the assumption that the BSs are modeled as points of a homogeneous PPP and that
the events that the BS-to-MT links are in LOS, NLOS or outage state are independent, W can
be partitioned into three (one for each link state) independent and non-homogeneous PPPs, i.e.,
Uros, Ynros and Yoy, such that U = W U W05 U W our. This originates from the thinning

property of the PPPs [17]. From (4), the densities of the PPPs ¥ s, Unros and Yoyt are equal

to Aros (7) = Apros (1), Anvos (1) = Apnros (r) and Aour (1) = Apour (), respectively.
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... excerpts from a paper of mine ...

" Under the assumption _fhat the BSs are modeled as points of a homogeneous PPP and that
the events that the BS-to-MT links are in LOS, NLOS or outage state are independent, W can

be partitioned into three (one for each link state) independent and non-homogeneous PPPs, i.e.,
Uros, Ynros and Yoy, such that U = W U W05 U W our. This originates from the thinning

property of the PPPs [17]. From (4), the densities of the PPPs ¥ s, Unros and Yoyt are equal

to )\LOS (7") = )‘pLOS (7’), )\NLOS (T) = ApNLOS (7“) and )\OUT (T) = )\pOUT (7’), TCSpGCtiV@ly.
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Modeling Assumption A, ... Modeling Assumption £

... excerpts from a paper of mine ...

Under the assumption that the BSs are modeled as points of a homogeneous PPP and that
the events that the BS-to-MT links are in LOS, NLOS or outage state are independent, W can
be partitioned into three (one for each link state) independent and non-homogeneous PPPs, i.e.,
Uros, Ynros and Yoy, such that U = W U W05 U W our. This originates from the thinning

property of the PPPs [17]. From (4), the densities of the PPPs ¥ s, Unros and Yoyt are equal

to Aros (7) = Apros (1), Anvos (1) = Apnros (r) and Aour (1) = Apour (), respectively.

As mentioned in Section II-D, for mathematical tractability, (shadowing) correlations between
links are ignored. Thus, the fading power gains of LOS and NLOS links are assumed to be
independent but non-identically distributed. As recently remarked and verified with the aid of
simulations in [13], this assumption usually causes a minor loss of accuracy in the evaluation
of the statistics of the Signal-to-Interference-plus-Noise-Ratio (SINR). For ease of description,

fast-fading 1s neglected in the present paper, but it may be readily incorporated.

T
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Under the assumption that the BSs are modeled as points of a homogeneous PPP and that
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property of the PPPs [17]. From (4), the densities of the PPPs ¥ s, Unros and Yoyt are equal

to Aros (7) = Apros (1), Anvos (1) = Apnros (r) and Aour (1) = Apour (), respectively.

As mentioned in Section II-I{ for mathematical tractability, J)shadowing) correlations between
links are ignored. Thus, the fading power gains of LOS and NLOS links are assumed to be

independent but non-identically distributed. As recently remarked and verified with the aid of
simulations in [13], this assumption usually causes a minor loss of accuracy in the evaluation
of the statistics of the Signal-to-Interference-plus-Noise-Ratio (SINR). For ease of description,

fast-fading 1s neglected in the present paper, but it may be readily incorporated.
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How Many “Comfortable” Assumptions Do We Need ?




“Modeling to Optimize” Wireless Networks by ANNs

Optimal
Resource
Allocation

Approximate
Wireless Network
Model
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Wireless Networks Design by “Iransfer Learning”

... combining live data and models ...

Live Data
Measurements

Optimal
Resource
Allocation

Approximate
Wireless Network

Model
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Wireless Networks Design by “Iransfer Learning”

... combining live data and models ...

Live Data
Measurements

Optimal
Resource
Allocation

Approximate

Wireless Network
Model

d Correcting the model mismatch = Less live data ?

d Reduced complexity at “run time” (after training)



Deep Learning for Wireless
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C.1: An accurate and tractable theoretical model 1s available
(e.g., point-to-point channel capacity, point-to-point bit error
probability).
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Deep Learning for Wireless

C.1: An accurate and tractable theoretical model 1s available
(e.g., point-to-point channel capacity, point-to-point bit error
probability).

C.2: An accurate but intractable theoretical model 1s available
(e.g., achievable sum-rate in interference-limited systems).

C.3: A tractable but inaccurate theoretical model is available
(e.g., spectral / energy efficiency of ultra-dense networks,
energy consumption models, hardware impairments).

C.4: Only inaccurate and intractable theoretical models are
available (e.g., molecular communication networks, optical
systems, end-to-end networks optimization).
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Deep Learning for Wireless

Model-Aided AI — Learning & Refining a Model

C.1: An accurate and tractable theoretical model 1s available
(e.g., point-to-point channel capacity, point-to-point bit error
probability).

C.2: An accurate but intractable theoretical model 1s available
(e.g., achievable sum-rate in interference-limited systems).

C.3: A tractable but inaccurate theoretical model is available
(e.g., spectral / energy efficiency of ultra-dense networks,
energy consumption models, hardware impairments).

C.4: Only inaccurate and intractable theoretical models are

available (e.g., molecular communication networks, optical

4

systems, end-to-end networks optimization).
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On “Iransfer Learning” to Design Wireless Networks

Live Data
Measurements

Approximate *
Wireless Network
Model

Optimal
Resource
Allocation
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Joint Model-Aided and Data-Driven Optimization

input Wireless output

Network
Optimization

Physical
System
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Joint Model-Aided and Data-Driven Optimization
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Joint Model-Aided and Data-Driven Optimization

input Wireless output
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Optimization
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Model Network
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System
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Joint Model-Aided and Data-Driven Optimization
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Optimization
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Joint Model-Aided and Data-Driven Optimization

input Wireless output

Network
Optimization
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Model Network Design
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Joint Model-Aided and Data-Driven Optimization

input Wireless output

Network
Optimization

Approximate Artificial Approximate
Mathematical Neural [——| System
Model Network Design

Physical
System l
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» Neural |[—
Data J Network
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Joint Model-Aided and Data-Driven Optimization

input Wireless output

Network
Optimization

Approximate Artificial Approximate
Mathematical Neural [——| System
Model Network Design

Measured W | Aﬁgf:;?l
Data J Network Design
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How To Combine Them ?

Approximate Artificial Approximate \
Mathematical Neural —| System I
Model Network Design

g | | ] L] | | | | ] L] | iy
Physical
System

[
Artificial
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J Network ' i
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How To Combine Them ?
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A Simple Example of Transfer

_____________/
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A Simple Example of Transfer

_____________/

1 Model-based ANN::

0 Randomly chosen (initial) biases and weights

Q Number of layers and neurons are hyper parameters
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A Simple Example of Transfer

_____________/

1 Model-based ANN::

0 Randomly chosen (initial) biases and weights

Q Number of layers and neurons are hyper parameters

d Data-driven ANN:
Q Input bias and weights from the model-based ANN

Q Number of layers and neurons is left unchanged 116



Large-Scale Network Optimization — Example
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Large-Scale Network Optimization — Example

Model
Poisson Point Process
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Large-Scale Network Optimization — Example

Model Live Data
Poisson Point Process Lattice Point Process
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Approach
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Approach

Q Step 1:

Q Learning a Poisson Point Process: Learning a model
by deep learning
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Approach

Q Step 1:

Q Learning a Poisson Point Process: Learning a model
by deep learning

Q Step 2:

Q Learning a non-Poisson Point Process: Refining a
model via deep transfer learning
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Numerical Example: Modeling vs. Reality
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Numerical Example: Modeling vs. Reality (Genie)
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Numerical Example: Modeling vs. Reality (Model)
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Numerical Example: Modeling vs. Reality (IFew Data)
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Numerical Example: Modeling vs. Reality (Iransfer)
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Programming the Environment: Towards Wireless 2.0

Di Renzo et al. EURASIP Journal on Wireless Communications and :
Networking (2019) 2019126 EU R{\SI P Journal on erelc_-:'ss
https://doi.org/10.1186/s13638-019-1438-9 Communications and Networking

Smart radio environments empowered ®

Check for
updates

by reconfigurable Al meta-surfaces:anidea
whose time has come

Marco Di Renzo'" ®, Merouane Debbah?, Dinh-Thuy Phan-Huy?, Alessio Zappone?,
Mohamed-Slim Alouini®, Chau Yuen®, Vincenzo Sciancalepore’, George C. Alexandropoulosa,
Jakob Hoydis?, Haris Gacanin'?, Julien de Rosny, Ahcene Bounceur'?, Geoffroy Lerosey'?

and Mathias Fink''

Abstract

Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and
computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds
in a seamless and sustainable manner. Currently, two main factors prevent wireless netwaork operators from building
such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be
customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are
generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power
and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio
environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films
of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces),
which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart 129
radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity,




Wireless 2.0: RISs & Al

Wireless 2.0: Towards an Intelligent Radio
Environment Empowered by Reconfigurable
Meta-Surfaces and Artificial Intelligence

Haris Gacanin and Marco Di Renzo

Abstract—We introduce “Wireless 2.0”’: The future generation
of wireless communication networks, where the radio environ-
ment becomes controllable, programmable, and intelligent by
leveraging the emerging technologies of reconfigurable meta-
surfaces and artificial intelligence (AI). This paper, in particular,
puts the emphasis on Al-based computational methods and
commence with an overview of the concept of intelligent radio
environments based on reconfigurable meta-surfaces. Later we
elaborate on data management aspects, the requirements of
supervised learning by examples, and the paradigm of rein-
forcement learning (RL) to learn by acting. Finally, we highlight
numerous open challenges and research directions.

H. Gacanin and M. Di Renzo, Vehicular Technol. Mag., arXiv:2002.11040

wireless communication systems remain extremely inefficient
due to the constraints imposed by the radio environment per se.
A typical base station, for example, transmits radio waves of
the order of magnitude of Watts while a typical user equipment
detects signals of the order of magnitude of ;#/Watts. The rest of
the energy is either dissipated over the channel or is a source
of interference for other network elements.

These fundamental limitations are challenged by recent
research on intelligent radio environments (IREs) [1]. In
IREs, the technology enablers of reconfigurable meta-surfaces
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Reconfigurable Intelligent Metasurfaces

Were Are We ?
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Reconfigurable Intelligent Metasurfaces

Were Are We ?

1G 2G 3G

Uniform Metasurface Non- Uniform Metasurface Reconfigurable Metasurface
(Homogenization of periodic) © NEEILEAZE]] ()] (Space-time variable)

2000-2010 5010-2020 1 l 2020-2030

J Extending the range of
applicability
U Ultrawideband
[ Shaped beams
d  Multibeam
U Multifrequency

Reconfigurability by switches
Reconfigurability by tunable material
Topological Metasurface

Smart metasurfaces beyond 5G

Cooo

Smart space-time Metasurfaces can be the key-future
technology for smart environment “beyond 5G”

Professor Stefano Maci, Huawei Antenna Summit 2019 132



Wireless 2.0: 6G Wireless + 3G Metasurfaces (JSAC)

Smart Radio Environments Empowered by

Reconfigurable Intelligent Surfaces:
How i1t Works, State of Research, and Road Ahead

Marco Di Renzo, Fellow, IEEE, Alessio Zappone, Senior Member, IEEE, Merouane Debbah, Fellow, IEEE,
Mohamed-Slim Alouini, Fellow, IEEE, Chau Yuen, Senior Member, IEEE, Julien de Rosny, and
Sergei Tretyakov, Fellow, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs) are an
emerging transmission technology for application to wireless

communications. RISs can be realized in different ways, which i

include (i) large arrays of inexpensive antennas that are usually Wireless

spaced half of the wavelength apart; and (ii) metamaterial-based Environment (H)

planar or conformal large surfaces whose scattering elements \ r :
have sizes and inter-distances much smaller than the wavelength. . ] y
Compared with other transmission technologies, e.g., phased v
arrays, multi-antenna transmitters, and relays, RISs require the o
largest number of scattering elements, but each of them needs -~
to be backed by the fewest and least costly components. Also, no

power amplifiers are usually needed. For these reasons, RISs

constitute a promising software-defined architecture that can

be realized at reduced cost, size, weight, and power (C-SWaP

Radio Environment

End-Points
Optimization:
max{f(Tx,Rx)}

design), and are regarded as an enabling technology for realizing Smart Radio Environment
the emerging concept of smart radio environments (SREs).

In this paper, we (i) introduce the emerging research Wireless
field of RIS-empowered SREs; (ii) overview the most suitable Environment (H) @
applications of RISs in wireless networks; (iii) present an
electromagnetic-based communication-theoretic framework for \ T x '
analyzing and optimizing metamaterial-based RISs; (iv) provide N 1 ! S

a comprehensive overview of the current state of research; and .

(v) discuss the most important research issues to tackle. ~
Owing to the interdisciplinary essence of RIS-empowered

SREs, finally, we put forth the need of reconciling and reuniting

C. E. Shannon’s mathematical theory of communication with . . . . .

G. Green’s and J. C. Maxwell’s mathematical theories of elec- Fig. 1: Radio environments vs. smart radio environments.

tromagnetism for appropriately modeling, analyzing, optimizing, 133

and deploying future wireless networks empowered by RISs.

Joint
Optimization
max{f(Tx,Rx,H)}



The Road Ahead: Reconciling COM, SE, 11, EM, ...

G. Green, “An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism”, 1828.

J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field”, 1865.

C. E. Shannon, “A (The) Mathematical Theory of Communication”, 1948. 134



From Model-or-Data to Model-and-Data Design...

Wireless Networks Design in the Era of Deep
Learning: Model-Based, Al-Based, or Both?

Alessio Zappone, Senior Member, IEEE, Marco Di Renzo, Senior Member, IEEE, Mérouane Debbah, Fellow,
IEEE
(Invited Paper)

https:/ /arxiv.org/abs/1902.02647

Abstract—This work addresses the use of emerging data-driven
techniques based on deep learning and artificial neural networks
in future wireless communication networks. In particular, a key
point that will be made and supported throughout the work is
that data-driven approaches should not replace traditional design
techniques based on mathematical models. On the contrary,
despite being seemingly mutually exclusive, there is much to be
gained by merging data-driven and model-based approaches.

To begin with, a detailed presentation is given for the reasons
why deep learning based on artificial neural networks will be an
indispensable tool for the design and operation of future wireless
communications networks, as well as a description of the recent
technological advances that make deep learning practically viable
for wireless applications. Our vision of how artificial neural
networks should be integrated into the architecture of future
wireless communication networks is presented, explaining the
main areas where deep learning provides a decisive advantage
over traditional approaches.

Afterwards, a thorough description of deep learning method-
ologies is provided, starting with presenting the general machine

[. INTRODUCTION AND VISION

All past and present generations of wireless communication
networks are based on mathematical models, that are either
derived from theoretical considerations, or from field mea-
surement campaigns. Mathematical models are at the heart
of all phases of network design, describing in quantitative
terms the effect that each system component has on the overall
performance. Mathematical models are used for initial network
planning and deployment, for network resource management,
as well as for network maintenance and control. Based on
underlying models, infrastructure nodes are statically deployed
to cover and manage fixed geographical areas, and traditional
optimization theory is used to optimize the network perfor-
mance through the centralized allocation of the available sys-
tem resources. However, this traditional approach to network
design has at least two drawbacks:



The Road Ahead: Reconciling COM, SE, 1T, EM, & ML

ACM AM. Tiuring Award 2018 - Winners

Yann LeCun Geoffrey Hinton Yoshiua Bengio
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RIS @ IEEE-COMSOC

Wireless Communications Technical Committee, Special
Interest Group: “Reconfigurable Intelligent Surfaces for

Smart Radio Environments (RISE)”

Signal Processing and Computing for Communications
Technical = Committee, Special  Interest  Group:
“REconFigurabLE Intelligent Surfaces for Signal
Processing & CommunicatlONS (REFLECTIONS)”

Emerging Technology Initiative (ETI): “Reconfigurable
Intelligent Surfaces”

Best Readings, “Reconfigurable Intelligent Surfaces”
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Further Information @ Google Scholar

Marco Di Renzo

CNRS Research Director - CentraleSupelec, Paris-Saclay University
Verified email at 12s.centralesupelec.fr - Homepage

Wireless Communications Communication Theory Stochastic Geometry Spatial Modulation

RIS

TITLE CITED BY YEAR

Stochastic Learning-Based Robust Beamforming Design for RIS-Aided Millimeter-Wave 2020
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G Zhou, C Pan, H Ren, K Wang, M Elkashlan, M Di Renzo
arXiv preprint arXiv:2009.09716

End-to-End Mutual-Coupling-Aware Communication Model for Reconfigurable Intelligent 2020
Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances

G Gradoni, M Di Renzo

arXiv preprint arXiv:2009.02694

Single-RF MIMO: From Spatial Modulation to Metasurface-Based Modulation 2020
Q Li, M Wen, M Di Renzo
arXiv preprint arXiv:2009.00789

Ergodic Secrecy Capacity of RIS-Assisted Communication Systems in the Presence of 2020

Discrete Phase Shifts and Multiple Eavesdroppers
P Xu, G Chen, G Pan, M Di Renzo
arXiv preprint arXiv:2009.00517
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arXiv preprint arXiv:2008.09404

Achievable Rate Optimization for MIMO Systems with Reconfigurable Intelligent Surfaces 2020
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arXiv preprint arXiv:2008.09563
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