ITUEvents

Graph Neural Networking 19 June 2020

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Bronze sponsor:

Organized by:

Graph Neural Networking Challenge 2020

Ref: ITU-ML5G-PS-014

José Suárez-Varela

Barcelona Neural Networking center

Universitat Politècnica de Catalunya

June 19th 2020

What are Graph Neural Networks?

What are Graph Neural Networks?

- Graph Neural Networks (GNN) is a neural network family designed to learn from graph-structured data
- GNN have been recently promoted and popularized by Google DeepMind *et al.**
- Extensively used in other fields where data is fundamentally represented as graphs (e.g., chemistry)

*Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261(2018).

Type of NN	Information Structure
Fully Connected NN	Arbitrary
Convolutional NN	Spatial
Recurrent NN	Sequential
Graph NN	Relational

Generic classification, non-linear regression

Images and video

mm

Text and voice

Graphs (molecules, maps, networks)

Current status of Graph Neural Networks

Google Trends: "Graph Neural Networks"

*Must-read papers on GNN: <u>https://github.com/thunlp/GNNPapers</u>

GNN is currently a hot topic in Al

- Many AI applications rely on graphs*:
 - Chemistry (e.g., molecules)
 - Biology
 - Physics
 - Logistics

• • •

- Social networks
- Computer Networks
- Currently, research efforts are being devoted to develop the theorethical foundations of GNN
- The networking community is starting to investigate its applications

How can Graph Neural Networks be applied to networking?

- A digital twin is a <u>mathematical representation</u> of a physical and/or logical object
- In networking, it is a **network model**
- It can be used for **network optimization**:
 - What will be the performance if I change this configuration? (e.g., routing)
 - What will happen if there is a failure? (e.g., on links)

Given a network configuration, can you predict the resulting performance?

• A digital twin for networks is fundamentally this box:

How to build a digital twin for networks?

- Networks are fundamentally represented as graphs:
 - Topology
 - Routing

...

• Traffic flowing along nodes and links

- Traditional neural networks (NN) are not suited to learn from graphs (e.g., Fully connected NN, Convolutional NN, Recurrent NN, etc.)
- Traditional NN-based approach \rightarrow Feature engineering
 - Ad-hoc solutions for specific problems, usually transforming the problem to prevent learning graphs
 - Limited performance, not applicable to complex real-world scenarios
 - Unable to generalize to other networks!

Generalization problem of traditional ML solutions for networks

- Main problem to achieve deployable
 ML-based solutions for networks:
 - Traditional ML solutions are not able to generalize to other networks

Generalization problem of traditional ML solutions for networks

- Main problem to achieve deployable
 ML-based solutions for networks:
 - Traditional ML solutions are not able to generalize to other networks
 - It is unfeasible to train ML-based optimization tools directly on customer's network:

It would require costly network instrumentation and might cause service disruption due to possible misconfiguration!

The same applies to transfer learning (need re-training on customers' networks)

Generalization problem of traditional ML solutions for networks

- Main problem to achieve deployable
 ML-based solutions for networks:
 - Traditional ML solutions are not able to generalize to other networks
 - It is unfeasible to train ML-based optimization tools directly on customer's network:

It would require costly network instrumentation and might cause service disruption due to possible misconfiguration!

The same applies to transfer learning (need re-training on customers' networks)

GNN applied to networking

- Graph Neural Networks is the only ML-based technique that is able to generalize over networks
- Non-ML alternatives to build digital twins:

 ★ Network simulation → Accurate, but computationally expensive

 Queuing theory → Unable to model complex real-world networks
- Advantages of GNN with respect to state-of the-art solutions:
 - Fast (low computational cost)
 - High accuracy
 - ✓ Deployability → Unlike other ML-based solutions,

it generalizes to other networks!

19/06/2020

As a result, they can model accurately other networks not seen

GNNs learn the underlying relationships between network

elements represented in the form of graphs

- As a result, they can model accurately other networks not seen during the training phase
- Standard GNNs (e.g., chemistry) are not directly suitable for computer networks
- Need for custom GNN models adapted to operate on different networking use cases

GNN is a generic toolbox to build solutions for networking

Looking at other fields: Computer Vision

Facial Recognition

Self-driving Cars

- Convolutional Neural Networks (CNN) led to a breakthrough in applications and services
- CNNs are well suited to model spatially structured data (e.g., images)

Graph Neural Networks are to computer networks what Convolutional Neural Networks are for computer vision

Graph Neural Networking challenge 2020

https://bnn.upc.edu/challenge2020

Problem overview:

- Input:
 - Network topology
 - Source-destination traffic matrix
 - Network configuration:
 - Routing
 - Queue scheduling policy on nodes (Strict priority, Weighted Fair Queueing and Deficit Round Robin)
- <u>Output:</u>
 - Mean per-packet delay on each source-destination flow

- Generated with the OMNet++ packet-accurate network simulator
- Thousands of simulation samples with topologies, routings, queue scheduling configurations, and traffic (large range of traffic intensities)

- All network nodes have three queues associated to three different traffic classes (different priorities)
- Samples of four different scenarios (25% samples each one):

- All network nodes have three queues associated to three different traffic classes (different priorities)
- Samples of four different scenarios (25% samples each one):
 - Scenario 1 → All nodes implement Weighted Fair Queuing (WFQ) with fixed weights on queues (60 for Queue #1, 30 for Queue #2, and 10 Queue #3)

- All network nodes have three queues associated to three different traffic classes (different priorities)
- Samples of four different scenarios (25% samples each one):
 - Scenario 1 → All nodes implement Weighted Fair Queuing (WFQ) with fixed weights on queues (60 for Queue #1, 30 for Queue #2, and 10 Queue #3)
 - Scenario 2 \rightarrow All nodes implement WFQ with variable weights assigned to queues

- All network nodes have three queues associated to three different traffic classes (different priorities)
- Samples of four different scenarios (25% samples each one):
 - Scenario 1 → All nodes implement Weighted Fair Queuing (WFQ) with fixed weights on queues (60 for Queue #1, 30 for Queue #2, and 10 Queue #3)
 - Scenario 2 \rightarrow All nodes implement WFQ with variable weights assigned to queues
 - Scenario 3 → Nodes can implement Strict Priority (SP), WFQ, or Deficit Round Robin (DRR). WFQ and DRR include variable weights on nodes

- All network nodes have three queues associated to three different traffic classes (different priorities)
- Samples of four different scenarios (25% samples each one):
 - Scenario 1 → All nodes implement Weighted Fair Queuing (WFQ) with fixed weights on queues (60 for Queue #1, 30 for Queue #2, and 10 Queue #3)
 - Scenario 2 \rightarrow All nodes implement WFQ with variable weights assigned to queues
 - Scenario 3 → Nodes can implement Strict Priority (SP), WFQ, or Deficit Round Robin (DRR). WFQ and DRR include variable weights on nodes
 - Scenario 4 → Similar to scenario 3 but it defines different traffic profiles for the three traffic classes

- Public data sets:
 - Training and validation datasets
 - See all the details at: <u>https://challenge.bnn.upc.edu/dataset</u>
- Python API to easily read and process the dataset

https://github.com/knowledgedefinednetworking/datanetAPI

- RouteNet* learns the relations between topology, traffic, routing and how these elements affect the resulting network performance (e.g., delay)
- Generalizes to **unseen** topologies, routing configurations and traffic

*Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. *In ACM SOSR 2019*

• Open source implementation in TensorFlow 2.1

https://github.com/knowledgedefinednetworking/RouteNet-challenge

RouteNet* is not designed to model the impact of different queue scheduling policies on nodes

*Rusek, K., Suárez-Varela, J., Mestres, A., Barlet-Ros, P. and Cabellos-Aparicio, A., 2019. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. *In ACM SOSR 2019*

Objective: Test the generalization capabilities of neural network solutions:

- Training dataset \rightarrow Samples simulated in two network topologies
- Validation and Test datasets → Samples simulated in a third topology
- The test data set will be released at the end of the challenge (Sep 11th) and the evaluation phase will start just after that
- We will evaluate the capability of the proposed solutions to make good delay predictions in the test dataset

- The test dataset will be unlabeled (i.e., no delay measurements)
- Participants have to label this dataset with their neural network models and send the results in CSV format

• Evaluation score \rightarrow MAPE (Mean Absolute Percentage Error)

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$
 Lower is better!

Guidelines for participants

- Participants are encouraged to update RouteNet or design their own neural network architectures
- How to update RouteNet:
 - Modify the neural network architecture to model different queue scheduling policies on nodes
 - Hyper-parameter tuning, normalization...
- We provide a tutorial on how to run RouteNet and modify the code

https://github.com/knowledgedefinednetworking/RouteNet-challenge

Graph Neural Networking challenge 2020

Organized as part of the ITU AI/ML in 5G Challenge (Ref: ITU-ML5G-PS-014)
 Special thanks to ITU for making this possible!

• Target audience:

- Networking community
- Al community (GNN is a hot topic!)

• Main resources:

- Baseline model and tutorial $\rightarrow \frac{\text{RouteNet}^*}{\text{RouteNet}}$
- API to easily read and process the datasets
- Mailing list to engage participants

https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx

Incentives for participants

- Good opportunity to be introduced in the application of GNN for networking This is the first competition in the world on GNN applied to networks!
- Access to the global round of the ITU AI/ML in 5G challenge:
 - Top candidates will be considered by the ITU judging committee
 - Awards and presentation at the final conference (Nov-Dec 2020)
 - More details at: <u>ITU AI/ML 5G Challenge: Participation Guidelines</u>

34

- Good opportunity to be introduced in the application of GNN for networking This is the first competition in the world on GNN applied to networks!
- Access to the global round of the ITU AI/ML in 5G challenge:
 - Top candidates will be considered by the ITU judging committee
 - Awards and presentation at the final conference (Nov-Dec 2020)
 - More details at: <u>ITU AI/ML 5G Challenge: Participation Guidelines</u>
- Top 3 teams will be recognized in the challenge website and will receive certificates of appreciation
- Presentation of the winning solution at the BigDama workshop (tentatively co-located with ACM CoNEXT 2020 – Dec 2020)

• Possibility to publish a paper co-authored with the challenge organizers

Organizing team

Albert López

Miquel Ferriol

Krzysztof Rusek

Prof. Pere Barlet-Ros

Prof. Albert Cabellos

Graph Neural Networking Challenge 2020

See all the details at: https://bnn.upc.edu/challenge2020

- Registration is now open to all participants (teams up to 4 members)
- **Challenge duration** \rightarrow May 22nd-Oct 21st (\approx 5-month duration)
- Registration deadline \rightarrow Jun 30th
- Evaluation phase → Sep 11th-Sep 25th
- Winners (top 3) official announcement → Oct 21st
- ITU final conference and awards → Nov-Dec 2020

ITU registration link: [<u>here</u>] Slack channel: [<u>here</u>]

ITU-ML5G-PS-012: ML5G-PHY (Universidade Federal do Pará, Brazil) 26 June 2020

ITU AI/ML in 5G Challenge

Applying machine learning in communication networks

ai5gchallenge@itu.int

Bronze sponsor:

Organized by:

