
Machine Learning for Wireless LANs +
Japan Challenge Introduction

ITU-ML5G-PS-031, ITU-ML5G-PS-032
29 July 2020

Register here
Join us on Slack

OrganizerSponsors

https://www.itu.int/net4/CRM/xreg/web/Registration.aspx?Event=C-00007607
https://join.slack.com/t/itu-challenge/shared_invite/zt-ee1tlayc-c~~vd7m5dge2HEpanLzwlg

ITU AI/ML in 5G Challenge

Global Round in Japan

2

3https://www.ieice.org/~rising/AI-5G/

Organizers

4

Three Problem Sets:
• Theme 1 (KDDI)
• Theme 2 (NEC)
• Theme3 (RISING)

Submission Deadline: 2020/9/20

5

2019/11/26-27
246 participants
111 Posters

We have organized a cross-field (across 19 technical committees of IEICE) symposium to apply AI/ML to networking

6

Today’s Webinar Agenda

Part 1: Invited Expert Talks

Advanced Traffic Classification Through In-Network Machine Learning, Prof. Akihiro Nakao (U of Tokyo),
Machine Learning for Wireless LANs, Associate Prof. Koji Yamamoto (Kyoto University),

Part 2: Problem Sets in the Global Challenge

ITU-ML5G-PS-031: Network State Estimation by Analyzing Raw Video Data. (Tomohiro Otani, KDDI Research, Inc)
ITU-ML5G-PS-032: Analysis on route information failure in IP core networks by NFV-based test environment.

Takanori Iwai(NEC Corporation)

https://itu.zoom.us/webinar/register/9815956026267/WN_Pdc0-r05TmujTGX0gatprw

https://itu.zoom.us/webinar/register/9815956026267/WN_Pdc0-r05TmujTGX0gatprw

[Invited Expert Talk]
Advanced Traffic Classification Through In-Network Machine Learning

Aki Nakao
The University of Tokyo

Professor
Vice Dean of Interfaculty Initiative in Information Studies
Advisor to the President of The University of Tokyo

2020/7/29

7

Akihiro Nakao

• Advisor to the President of the University of Tokyo
• Vice Dean, Interfaculty Initiative in Information Studies
• Professor, the University of Tokyo

• Chairman of 5GMF Network Committee
• Chairman of Local5G Committee, Broadband Association
• Various Roles in Ministry of Internal Affairs and
Communication (MIC), Japanese Government
• Executive CTO of FLARE NETWORKS

9

10

11

8K Live Streaming with 5G for Remotely Monitoring Race-Horses

～World-First 5G Drone 8K Live Streaming～
2019/11 Released

decoder
5G-BS

5G-BS

decoder

decoder
8K(4K x 4) Live Stream
Multi-Angle Views

8K Live Stream

8K(4K x 4) Live Stream
Multi-Angle Views

5G-UE

8K Live Stream 5G-UE

5G-UEDrone 8K Cam

Press
Release!

• Remote realtime monitoring Oyster Farming Rafts and Fishnets through water-drone
• 5G base station at the seashore and 5G CPE on the fishing boat
• URLLC for controlling under water drone
• eMBB for live video streaming
• 28GHz millimeter wave band over 100-150m distance between the boat and the seashore

2019/11 Released

Press
Release!

12

5G Live Videso Streaming and Realtime Control of Under-Water Drone

5G Base Station
(Ericsson)

5G CPE
(Intel)

Oyster Farming Rafts and Fishnets

Wire

Underwater Drone

Sea-Bottom

Seashore

5G Live Videso Streaming and Realitime Control of Under-Water Drone

13

14

5G CPE on fishing boat

5G Base Station

5G CPE on fishing boat

5G Base Station

15

5G Transparent Extension of Control Range of WiFi equipment (underwater drone)

WiFi
BS

5G
CPE

5G
BS

5G
(eMBB, URLLC)

Sea Water Seashore

Fishing Boat

Smartphone
ApplicationWiFi

UE

Underwater
Drone

WiFi
UE

Oysters

WiFi
UEExisting

WiFi Equipment

Transparent Extension
Through 5G Communication

Underwater Drone
Smartphone
Application

16

Without Network Slicing on Per-App Basis

URLLC
(Ultra Reliable and

Low Latency Communication）

eMBB
(enhance Mobile Broadband）

RAN Core Transport

UE

Cloud

1G

>10G

100M

100

1,000

10,000

10
1

50
500

x1000 <

Typical User Throughput (bps)

Latency (ms)
(RAN R.T. delay)

Mobility (km/h)

Number of Connected Users

Energy Saving

1

High Energy Saving

1

Capacity (bps/km2)

1/3<

High Mobility

High Capacity

High Number of Connected Users

Applications with different QoS requirements
share the same end-to-end communication channel

mMTC
(massive Machine Type Communication）

16

RAN Core Transport

UE

Cloud

With Network Slicing on Per-App Basis

Applications with different QoS requirements
are isolated into “slices"

Communication Infrastructure is “softwarized”
Dynamic resource allocation is enabled

Network functions can be executed

Network Functions

Slices
URLLC

(Ultra Reliable and
Low Latency Communication）

eMBB
(enhance Mobile Broadband）

mMTC
(massive Machine Type Communication）

17

5G! Pagoda’s View on Future Mobile Infrastructure
5G/IoT Service Centric Network Slicing Control and Operations
over Multi-Domains and Multi-Technologies

18

WP1：Coordination & Management (AALTO, UT/NESIC) WP6：Promotion and Standardization (All Partners)

Multi-RAT Front/Backhaul Core Network Data-center
Network

Sensor Device
Network

Network
Resources

Computing/Storage resourcesMobile Edge
Computing

Terminal/
Device Data-center

WP2：Network
Softwarization Architecture
(All Partners)

WP5：Federated Testbeds and
Experiments
(UT, WU, NESIC, AALTO,
Ericsson, Orange, FOKUS)

Data centerBase station

WP4：E2E Slice
Orchestration
(UT, KDDI, HITACHI,
AALTO, Ericsson, Orange)

Orchestration

Creation of specific slice for each service

Advanced ITS Slice

WP3：Network Slicing Mechanisms
(UT, WU, NESIC, Ericsson, AALTO,
FOKUS, Orange)

CDN/ICN Slice

IoT/M2M Slice

WP1�Coordination & Management (AALTO, UT/NESIC) WP6�Promotion and Standardization (All Partners)

Multi-RAT Front/Backhaul Core Network Data-center
Network

Sensor Device
Network

Network
Resources

Computing/Storage resources Mobile Edge
 Computing

Terminal/
Device Data-center

WP2�Network
Softwarization
Architecture (All
Partners)

WP5�Federated
Testbeds and
Experiments
(UT, WU, NESIC,
AALTO, Ericsson,
Orange, FOKUS)

Data center Base station

WP4�E2E Slice
Orchestration
(UT, KDDI,
HITACHI, AALTO,
Ericsson, Orange)

Orchestration

Creation of specific slice for each service

Advanced ITS Slice

WP3�Network Slicing
Mechanisms
(UT, WU, NESIC,
Ericsson, AALTO,
FOKUS, Orange)

CDN/ICN Slice

IoT/M2M Slice

10-100Gbps broadband/new protocol oriented

1ms Low- latency

106 devices/km2 oriented

Operation of virtual network for different mobile
services

Operation of virtual network for different mobile services

5G/IoT Service Centric Network Slicing Control and Operations over Multi-Domains and
Multi-Technologies Future Infrastructure

10-100Gbps broadband/new protocol

1ms Low-latency

106 devices / km2 oriented

					R&D	Statement	and	Goals		
1. WP1: Coordination and Management

Project management through iterating PDCA
cycles

2. WP2: Network Softwarization Architecture
Development of unified E2E Mobile
Infrastructure Architecture enabling multiple
hundreds of slices instantiation

3. WP3: Network Slicing Mechanisms
Development high-performance and highly
programmable C/D-plane execution platform
Development of ICN, advanced protocols, over
slices

4. WP4�E2E Slice Orchestration
Development of distributed schemes and
platform for achieving scalable operations and
management

5. WP5�Federated Testbeds and Experiments
Technical integration and federation of
technical assets of WP2-3, and PoC systems
development and evaluation

6. WP6: Standardization
Contribution and leadership in Global SDO,
e.g. ITU, 3GPP

Technical	Goals		
Standardization and Verification of E2E
Network Slicing Technologies through
EU/Japan Collaborative R&D efforts
(1) Network Softwarization and E2E

Network Slicing Architecture
(2) Data Plane Programmability and its

Advanced Networking Protocols
Instrumentation

(3) Scalable E2E Slice Operations and
Managements (Orchestrations)

Blue-Print	of	E2E	Network	Slicing	

A	network	slice	for	every	service!	

Per-Application Network Slicing for Mobile Networks

19

Radio Access Network Core Network

P-GW

App-specific Spectrum
Allocation

App-specific Data
Processing

Application
IdentificationApp App

Deep
Learning

eMBB
(high capacity)

uRLLC
(low latency)

mMTC
(massive connections)

Transcoding

Firewall

High-
priority

n P-GW is the best point to perform application identification
since all the traffic go through it

n P-GW can convey its identified app-info to both RAN and CN.

(Deep) Machine Learning-based App-Slicing Architecture

In-Network Deep Learning at P-GW:
Ø UL: classifies traffic to different app-specific MEC for processing
Ø DL: tags acknowledgement packets (e.g., zero-payload SYN/ACK) from different

application with app-info and sends to eNB for app-specific RB scheduling

Supervising
smartphone

Regular smartphones

Feature
extraction

eNB2
P-GW

Feature
data

MEC

Classifier
updating

Deep
Learning

Deep Neural Network

App 1

App 2

App n

Traffic
classification
and tagging

Internet

App1-specific
Processing

App2-specific
Processing

Appn-specific
Processing

App-specific
scheduling

regular
packet

App tagged packet
(TCP SYN/ACK)

eNB1

App tagged packet
(TCP SYN)

App-specific
scheduling

20

18%

14%

11%

9%
8%

7%

5%

3%
3%

3%

2%
2% 15% mediaserver

com.android.chrome
com.sauzask.nicoid
com.google.android.youtube
tethering
jp.co.asbit.pvstar
android.process.media
com.facebook.katana
jp.gocro.smartnews.android
com.google.android.music:main
jp.co.yahoo.android.yauction
com.twitter.android
Others

• Observations
– Video Streaming (43%)

• mediaserver, com.sauzask.nicoid, com.google.android.youtube, android.process.media
– Web browsing (14%)

• com.android.chrome
– Tethering (7.8%)
– Social networks (4.8%)

• com.facebook.katana, com.twitter.android

Breakdown of Real MVNO Traffic

(Deep) Machine Learning-based App-Slicing Architecture

In-Network Deep Learning at P-GW:
Ø UL: classifies traffic to different app-specific MEC for processing
Ø DL: tags acknowledgement packets (e.g., zero-payload SYN/ACK) from different

application with app-info and sends to eNB for app-specific RB scheduling

Supervising
smartphone

Regular smartphones

Feature
extraction

eNB2
P-GW

Feature
data

MEC

Classifier
updating

Deep
Learning

Deep Neural Network

App 1

App 2

App n

Traffic
classification
and tagging

Internet

App1-specific
Processing

App2-specific
Processing

Appn-specific
Processing

App-specific
scheduling

regular
packet

App tagged packet
(TCP SYN/ACK)

eNB1

App tagged packet
(TCP SYN)

App-specific
scheduling

22

Random Forest

23

ApplicationsPacket DNN

input
layer

hidden
layer

hidden
layer

output
layer

DST_IP

DST_PORT

TTL
Packet Size

Protocol Dynamic Mapping

Automotive Driving

Advertisement

Emergency NotificationMAC
IP

TCP/UDP
Data

Features

Extract

Packet Interval

ApplicationsPacket DNN

input
layer

hidden
layer

hidden
layer

output
layer

DST_IP

DST_PORT

TTL
Packet Size

Protocol Dynamic Mapping

Automotive Driving

Advertisement

Emergency NotificationMAC
IP

TCP/UDP
Data

Features

Extract

Packet Interval

Random Forest

24

Y
(C

ha
ra

ct
er

ist
ic

s 2
)

X (Characteristics 1)

1.0

1.0

0.0
0.0

Decision Tree

Classification Accuracy ~ 80%

Y
(C

ha
ra

ct
er

ist
ic

s 2
)

X (Characteristics 1)

1.0

1.0

0.0
0.0

Random Forest

Classification Accuracy ~ 94%

α

β

α

β

White Dots: X > α and Y > β

Ensemble

25

60%

60%

60%

Score (Accuracy)

90%!!

10 Questions
Correct Answers

Ensemble Learning

Student1

Student2

Student3

Vote Result

Vote among Weak Studnets

26

60%

60%

60%

Accuracy

90%!!

10 Questions
Correct Answers

Ensemble Learning

Decision Tree1

Ensemble Learning

Vote among Weak Classifier (Deterministic Tree)

Decision Tree2

Decision Tree3

27

Correct
Answer

60%

60%

60%

Vote Result

Score Score

90%!!

Correct
Answer

Vote Result

Bad Choice of Weak Classifiers

60%

60%

60%

Good Choice of Weak Classifiers

60%

Uncorrelated Weak Classifiers Produces Better Classification

28

A Given Dataset

Random Sampling

Decision Trees

Random Forest

Learning

29

20 Features of Traffic Flows Application Classification Accuracy

Yellow cells: feature designed based on the trace.
white cells: designed based on existing research.

Deep Learning

30

ApplicationsPacket DNN

input
layer

hidden
layer

hidden
layer

output
layer

DST_IP

DST_PORT

TTL
Packet Size

Protocol Dynamic Mapping

Automotive Driving

Advertisement

Emergency NotificationMAC
IP

TCP/UDP
Data

Features

Extract

Packet Interval

• Step 1: The system extracts feature vectors from packets and feed the vectorized
features into the input layer of DNN (deep neural network)

• Step 2: Training model DNN is defined with an input layer, multiple fully connected
hidden layers, and an output layer. Each hidden layer is a feed-forward neural
network.

• Step 3: Output layer is built with softmax regression mode and its output is a
probability vector over applications. The packet is identified as the application with
highest probability.

31

Selection of Feature Vectors

(a) Feature <client_ip, client_port> has almost no impact on the identification accuracy.
(b) Feature TTL has a great impact on the identification accuracy because TTL is a metric
of distance from the application server to the P-GW. The distance is application-specific.
(c) Feature packet_size is also a useful feature because client and server need to
exchange information during connection establishment. The size of exchange information
is application-specific.

Vector 1 = <server_ip, server_port, proto>

Summary:

32

1. For 5G and Beyond 5G, fine-grained network slicing becomes important as network requirement
varies significantly per application. Advanced traffic classification using machine learning (ML)
without privacy violation is a viable use case to demonstrate the power of ML.

2. In-Network Machine Learning is powerful means to derive useful high-level information especially
in 5G and beyond 5G
• Traffic User Data
• Network Operational Data
• Human behavior Data (Usage of UE, Applications, etc)

3. Tangible example use cases such as traffic classification are simple but suitable and attractive
for education purpose (lower barrier to entry to ML/AI application to networking)

Such examples would accelerate research and education on the subject.

References

• Akihiro Nakao and Ping Du, “Toward In-Network Deep Machine Learning for
Identifying Mobile Applications and Enabling Application Specific Network
Slicing”, IEICE Transactions E101-B, No.7, pp.1536-1543, 2018.

• Ping Du, Akihiro Nakao, Zhaoxia Sun, Lei Zhong and Ryokichi Onishi, “Deep
Learning-based C/U Plane Separation Architecture for Automotive Edge
Computing”, The Fourth ACM/IEEE Symposium on Edge Computing (SEC),
2019.

• Ping Du and Akihiro Nakao, "Deep Learning-based Application Specific RAN
Slicing for Mobile Networks”, IEEE International Conference on Cloud Networking
(CloudNet), 2018.

• Takamitsu Iwai, Akihiro Nakao (University of Tokyo), Adaptive Mobile Application
Identification Through In-Network Machine Learning, APNOMS 2016

33

Demonstration of machine learning function
orchestrator (MLFO) via reference implementations

(ITU-ML5G-PS-024)
Shagufta Henna, LYIT, 31 July 2020

Register here
Join us on Slack

OrganizerSponsors

https://www.itu.int/net4/CRM/xreg/web/Registration.aspx?Event=C-00007607
https://join.slack.com/t/itu-challenge/shared_invite/zt-ee1tlayc-c~~vd7m5dge2HEpanLzwlg

Machine Learning for Wireless LANs +

Japan Challenge Introduction
ITU-ML5G-PS-031, ITU-ML5G-PS-032

29 July 2020

Register here
Join us on Slack

OrganizerSponsors

Machine Learning for Wireless LANs
Koji Yamamoto

Graduate School of Informatics, Kyoto University

2020-07-29

Theme 3 — Global Round in Japan — ITU AI/ML in 5G Challenge

! Location estimation from Wi-Fi RSSI (Received Signal Strength Indicator)

! Japan round only
Not eligible for final conference

This lecture talk

! Our applications of deep
supervised learning and
reinforcement learning

! For microwave and mmWave
WLANs

! Deep (supervised) learning in
Part I

! Deep reinforcement learning in
Part II

https://www.ieice.org/~rising/jpn/AI-5G/

2 / 33

https://www.ieice.org/~rising/jpn/AI-5G/

Part I

Deep Learning for mmWave WLANs

[Nishio+2019] T. Nishio, H. Okamoto, K. Nakashima, Y. Koda,
K. Yamamoto, M. Morikura, Y. Asai, and R. Miyatake, “Proactive
received power prediction using machine learning and depth images for
mmWave networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 11,
Nov. 2019

T. Nishio Y. Koda

3 / 33

Human body blocking in mmWave communications

5G — 28GHz band
IEEE 802.11ad/ay — 60GHz band
! Beyond Gbit/s communications using bandwidth of 2.16GHz or

more (IEEE 802.11ad)
! Strong attenuation (15 dB–) when human blocks line-of-sight

Path 1
was blocked

Path 1
was blocked

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 o

f p
at

h
1

(M
bi

t/s
)

Time (s)

Path 1

mmWave AP

[Nishio+2019]
4 / 33

mmWave received power prediction based on DL and camera images

Key idea: Deep learning and camera images

Future
received
power

Deep Neural Network

Prediction:
Received power in 500ms ahead is accurately predicted
only from camera images

[Nishio+2019]
5 / 33

(1) Received power prediction (2) Linear regression
(Regression)

Input x Camera images x ∈ R1

Output y Future received power y ∈ R1

NNs

2418 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 11, NOVEMBER 2019

from images. For a detailed description of the algorithm,
please refer to reference [43].

3) Random Forest: The RF [48] is one of the most typical
ensemble learning models. The RF consists of numerous
simple decision trees using a bootstrap sample of the data
and a randomly selected subset of input features at each split
while growing each tree. Every tree predicts its output from
an input vector, and the model outputs the mean prediction
of these outputs. Thus, the RF offers the advantage of two
ML algorithms: bagging [49] and random variable selection,
which results in a stable and accurate model. A well-known
application of this model is the 3D location prediction of
individual body parts using an RGB-D image [50]. We expect
that the RF will capture the spatiotemporal features and predict
the received power from depth images, similar to predicting
the 3D location of body parts from RGB-D images.

B. Structures and Hyperparameters of Machine Learning
Models

We constructed two NNs, namely CNN+ConvLSTM and
CNN, and employed the RF as the candidate for the ML
algorithms in the proposed mechanism. Fig. 3 illustrates the
structures of the CNN+ConvLSTM and CNN, which included
4.1 and 3.7 million parameters, respectively. As mentioned in
Section III-C, the structures and hyperparameters of the NNs
were manually tuned so that they could predict the received
power from s = 16 consecutive depth images with low
errors for the validation data in the experimental evaluation.
These NNs used 3D input xt and returned the received power
yt+k. They consisted of several layers: 3D convolution (3D
conv), ConvLSTM, fully connected (FC), and average pooling
layers. Each layer obtained its input from the previous layer
and fed its output to the next layer. The average pooling
layers reduced the size of the feature maps by averaging the
values that reduce the calculation cost. The FC layers were
used to predict the received power according to the feature
map output from the previous layer. The NNs employed
batch normalization (BN) [51], rectified linear unit (ReLU)
activation, and a flattening operation. BN allows to use higher
learning rates and be less careful about the initialization of
NN parameters to accelerate training [51]. ReLU, which is the
most widely used activation function, is a nonlinear function
that is linear for positive inputs and outputs zero for negative
inputs. The activation function introduces nonlinearity into an
NN and allows it to learn nonlinear mapping. The flattening
operation transfers a tensor to a vector to input it into the FC
layer.

The first two 3D conv layers adopted 64 and 128 con-
volution kernels with a size of 1 × 3× 3 (time × height
× width). The kernel size of the time domain was set to
1 so that these 3D conv layers could be utilized to extract
the spatial features of each depth image in a time-sequential
image. The ConvLSTM layers adopted 64 convolution kernels
with a size of 3× 3 (height × width). The first ConvLSTM
layer returned 3D feature maps, while the second returned 2D
maps, as illustrated in Fig. 3(b). In the CNN, we employed
three 3D conv layers consisting of 64 kernels with a size of

Fig. 3. Structures of NNs used in evaluations.

3×3×3, 3×3×3, and 8×1×1, in order. The three 3D conv
layers were implemented instead of the preceding ConvLSTM
layers, in which the final output size of these three convolution
layers was consistent with that of the two ConvLSTM layers.
While these two ConvLSTM layers or three 3D conv layers
were utilized to extract the spatiotemporal features of each
depth image, it was expected that the ConvLSTM layers could
extract longer-term temporal features than the 3D conv layers.

BN and ReLU activation were applied after every ConvL-
STM and 3D conv layer, except for the fourth 3D conv layer
in the CNN. The pool size of the average pooling layer was
2× 2× 2, which means that each dimensional size of the
feature map was reduced by half. Thereafter, the spatial feature

Simple perceptron (NN) with
linear activation function

6 / 33

Simple perceptron

x w

x1

1

...

xn

φ(wx) y
w1

wn

w0

y = φ

(
n∑

i=1

wixi + w0

)
= φ(wx)

x

1

wx+b

w

b

y

Linear activation function
φ(x) = x

y = wx+ b

class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = torch.nn.Linear(1, 1)

def forward(self, x):
x = self.fc1(x)
return x

7 / 33

(1) Received power prediction (2) Linear regression

Future power = f (1)
()

y = f (2)(x) = wx+ b

Training f (1) = NN by labeled data
set

Training f (2), i.e., w and b by la-
beled data set (xi, yi)
yi = 2xi + 3 + ϵ, ϵ ∼ N (0, 1)

8 / 33

Open in ColabOpen in Colab

9 / 33

https://colab.research.google.com/drive/18l9LC6Uy9DiihdaBYc6wR_ilgAKbd2es?usp=sharing

Trained neural network

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
criterion = torch.nn.MSELoss()
(Training)
print(net.fc1.weight) # tensor([[2.0332]], requires_grad=True)
print(net.fc1.bias) # tensor([2.8885], requires_grad=True)

y = 2x+ 3 + ϵ: Labeled data (xi, yi)
y = wx+ b: Neural network

Minimum mean-squared error estimation in linear regression
10 / 33

Multiple inputs → Deep networks

x1

x2

...

...

y

f(x) = ReLU(x) := max{0, x}

class Net(torch.nn.Module):
def __init__(self):

super(Net, self).__init__()
self.fc1 = torch.nn.Linear(2, 64)
self.fc2 = torch.nn.Linear(64, 32)
self.fc3 = torch.nn.Linear(32, 1)

def forward(self, x):
x=torch.nn.functional.relu(self.fc1(x))
x=torch.nn.functional.relu(self.fc2(x))
x=self.fc3(x)
return x

11 / 33

Measured dataset for future received power prediction

Depth images

Received power

Time

· · ·

–50 dBm –51 dBm –49 dBm · · · –70 dBm

–60ms –30ms 0ms · · · 500ms

By using this dataset, how can we train the NN

2418 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 11, NOVEMBER 2019

from images. For a detailed description of the algorithm,
please refer to reference [43].

3) Random Forest: The RF [48] is one of the most typical
ensemble learning models. The RF consists of numerous
simple decision trees using a bootstrap sample of the data
and a randomly selected subset of input features at each split
while growing each tree. Every tree predicts its output from
an input vector, and the model outputs the mean prediction
of these outputs. Thus, the RF offers the advantage of two
ML algorithms: bagging [49] and random variable selection,
which results in a stable and accurate model. A well-known
application of this model is the 3D location prediction of
individual body parts using an RGB-D image [50]. We expect
that the RF will capture the spatiotemporal features and predict
the received power from depth images, similar to predicting
the 3D location of body parts from RGB-D images.

B. Structures and Hyperparameters of Machine Learning
Models

We constructed two NNs, namely CNN+ConvLSTM and
CNN, and employed the RF as the candidate for the ML
algorithms in the proposed mechanism. Fig. 3 illustrates the
structures of the CNN+ConvLSTM and CNN, which included
4.1 and 3.7 million parameters, respectively. As mentioned in
Section III-C, the structures and hyperparameters of the NNs
were manually tuned so that they could predict the received
power from s = 16 consecutive depth images with low
errors for the validation data in the experimental evaluation.
These NNs used 3D input xt and returned the received power
yt+k. They consisted of several layers: 3D convolution (3D
conv), ConvLSTM, fully connected (FC), and average pooling
layers. Each layer obtained its input from the previous layer
and fed its output to the next layer. The average pooling
layers reduced the size of the feature maps by averaging the
values that reduce the calculation cost. The FC layers were
used to predict the received power according to the feature
map output from the previous layer. The NNs employed
batch normalization (BN) [51], rectified linear unit (ReLU)
activation, and a flattening operation. BN allows to use higher
learning rates and be less careful about the initialization of
NN parameters to accelerate training [51]. ReLU, which is the
most widely used activation function, is a nonlinear function
that is linear for positive inputs and outputs zero for negative
inputs. The activation function introduces nonlinearity into an
NN and allows it to learn nonlinear mapping. The flattening
operation transfers a tensor to a vector to input it into the FC
layer.

The first two 3D conv layers adopted 64 and 128 con-
volution kernels with a size of 1 × 3× 3 (time × height
× width). The kernel size of the time domain was set to
1 so that these 3D conv layers could be utilized to extract
the spatial features of each depth image in a time-sequential
image. The ConvLSTM layers adopted 64 convolution kernels
with a size of 3× 3 (height × width). The first ConvLSTM
layer returned 3D feature maps, while the second returned 2D
maps, as illustrated in Fig. 3(b). In the CNN, we employed
three 3D conv layers consisting of 64 kernels with a size of

Fig. 3. Structures of NNs used in evaluations.

3×3×3, 3×3×3, and 8×1×1, in order. The three 3D conv
layers were implemented instead of the preceding ConvLSTM
layers, in which the final output size of these three convolution
layers was consistent with that of the two ConvLSTM layers.
While these two ConvLSTM layers or three 3D conv layers
were utilized to extract the spatiotemporal features of each
depth image, it was expected that the ConvLSTM layers could
extract longer-term temporal features than the 3D conv layers.

BN and ReLU activation were applied after every ConvL-
STM and 3D conv layer, except for the fourth 3D conv layer
in the CNN. The pool size of the average pooling layer was
2× 2× 2, which means that each dimensional size of the
feature map was reduced by half. Thereafter, the spatial feature

, i.e., f (1)?

Future received power = f (1)
()

12 / 33

From measured dataset to training dataset

Depth images

Received power

Time

· · ·

–50 dBm –51 dBm –49 dBm · · · –70 dBm

Measured data

–60ms –30ms 0ms · · · 500ms

x1

y1

y = f (1)(x)

13 / 33

Part II

Deep Reinforcement Learning for
WLANs

[Nakashima+2020] K. Nakashima, S. Kamiya, K. Ohtsu, K. Ya-
mamoto, T. Nishio, and M. Morikura, “Deep reinforcement
learning-based channel allocation for wireless LANs with graph
convolutional networks,” IEEE Access, vol. 8, Feb. 2020

S. Kamiya

[Koda+2020] Y. Koda, K. Nakashima, K. Yamamoto, T. Nishio,
and M. Morikura, “Handover management for mmWave net-
works with proactive performance prediction using camera images
and deep reinforcement learning,” IEEE Trans. Cogn. Commun.
Netw., vol. 6, no. 2, Feb. 2020 Y. Koda

14 / 33

Motivation — Optimal Channel Allocation

Optimal channel allocation?
Criterion: Aggregated throughput

Number of channels: 2

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Framework: Combinatorial
optimization (NP-hard)

BoE throughput [Liew+2010] is shown for the ease of explanation.
15 / 33

Motivation — Optimal Channel Allocation

Optimal channel allocation?
Criterion: Aggregated throughput

Number of channels: 2

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Framework: Combinatorial
optimization (NP-hard)

BoE throughput [Liew+2010] is shown for the ease of explanation.
15 / 33

Motivation — Optimal Sequence

Different problem setting:

! Finding the minimal sequence

! Only one AP can change its channel at a given time

! Throughput can be observed only after channel allocation

Initial state Optimal states

1

2

3

4

5

1

0

1

0

1

We would like to
find the minimum

sequence.

1

2

3

4

5

1

1

1

1

1

1

2

3

4

5

1

1

1

1

1

This part is simplified version of [Nakashima+2020]
16 / 33

Channel Allocation Sequence

1

2

3

4

5

1

0

1

0

1

1

2

3

4

5

1

1

1

0

1

1

2

3

4

5

1

1

1

1

1

←
We want to ac-
quire this sequence
based on observed
throughput
Criterion?

1

2

3

4

5

1

0

1

0

1

1

2

3

4

5

0.5

0.5

1

0.5

0.5

1

2

3

4

5

1

1

1

0.5

0.5

1

2

3

4

5

1

1

1

1

1

t = 0 t = 1 t = 2 t = 3 17 / 33

Deep RL
with graph convolution

RL
Q-learning

Deep learning
Function approximation

with deep neural networks

Graph convolution

18 / 33

Deep RL
with graph convolution

RL
Q-learning

19 / 33

Tic Tac Toe — Second player ‘o’

x

State S0

o
x

Action A0

o
x

x

State S1

o
x

x

o

Action A1

o
x

x

o
x

State S2

The second player observes state St and takes action At,
then observes the next state St+1,

and gets the reward Rt+1 — win or loss.

Problem:
Without knowing the rule of the game, i.e.,
only based on the observed sequence (St, At, Rt+1, St+1),
we determine the appropriate action.

Approach:
Reinforcement learning — (Tabular) Q-learning

20 / 33

Action-value function:
Q : State× Action %→ Expected reward

Action
State A B C D E F G H I
...

o
x
x

o
o

x
x

o
o

xx

o
...

A B
ED

C
F

G H I

Updating the value of Q table according to observed sequence
(St, At, Rt+1, St+1).

21 / 33

Open in ColabOpen in Colab

22 / 33

https://colab.research.google.com/drive/1QkAA89UypK4rqTKiPtR3MkGU52TlgzMl?usp=sharing

Q table of Tic-Tac-Toe

Number of actions:
3× 3 = 9 cells

Number of states:
39 = 19683
blank, o, or x for each cell

Number of elements in Q table:
9× 19683 even in this simple problem

To estimate Q∗(s, a), every state-action pair should be visited
When the number of states is huge, training is infeasible — State
explosion

23 / 33

Markov decision process

! Agent: Centralized controller of all APs
! State: Channels and contention graph of APs
! Action: Channel selection of one AP
! Reward: Throughput

CH 1

i

Current state

CH 1 CH 2

i

Next state

Action: AP i changes its channel to 2

[Nakashima+2020]
24 / 33

Q table in channel allocation

Case 1 Case 2

Number of APs 4 10
Number of links between APs

(4
2

)
= 6

(10
2

)
= 45

Number of link states 26 245

Number of channels 2 3
Number of channel states 24 310

Number of states 26 · 24 = 1024 245 · 310 = 2 · 1018

25 / 33

Tabular Q-learning

Qt+1(St, At)
.
= Qt(St, At) + αt δt+1(Qt)

δt+1(Qt)
.
= Rt+1 + γmax

a′∈A
Qt(St+1, a

′)−Qt(St, At)

Q-learning with function approximation

Extension to function approximation with a parameterized function Qθ,
θ ∈ Rd

θt+1
.
= θt + αt δt+1(Qθt)∇θ Qθt(St, At)

δt+1(Qθt)
.
= Rt+1 + γmax

a′∈A
Qθt(St+1, a

′)−Qθt(St, At)

Deep reinforcement learning

Q-learning with function approximation using deep neural networks

26 / 33

Deep RL
with graph convolution

RL
Q-learning

Deep learning
Function approximation

with deep neural networks

Graph convolution

State Design and Feature Extraction [Nakashima+2020]

State: Adjacency of APs and selected channel

Physical expression

CH 2

CH 1

2
1

3

4

5

Graph expression

2
1

3

4

5

Tabular expression
5x7 matrix

⎡

⎢⎢⎢⎢⎣

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦

[
1 0 0 1 1
0 1 1 0 0

]
Ch 1
Ch 2

Feature extraction (pre-processing):

Graph convolutional networks Convolutional neural network (CNN)

Feature extraction for graphs Feature extraction for images

27 / 33

State: 5x7 matrix

input_1: InputLayer
input:
output:

(None, 1, 5, 7)
(None, 1, 5, 7)

lambda_2: Lambda
input:

output:
(None, 1, 5, 7)
(None, 1, 5, 2)

lambda_1: Lambda
input:
output:

(None, 1, 5, 7)
(None, 1, 5, 5)

spectral_graph_convolution_1: SpectralGraphConvolution
input:

output:
[(None, 1, 5, 2), (None, 1, 5, 5)]

(None, 1, 5, 32)

spectral_graph_convolution_2: SpectralGraphConvolution
input:
output:

[(None, 1, 5, 32), (None, 1, 5, 5)]
(None, 1, 5, 16)

batch_normalization_1: BatchNormalization
input:

output:
(None, 1, 5, 32)
(None, 1, 5, 32)

batch_normalization_2: BatchNormalization
input:

output:
(None, 1, 5, 16)
(None, 1, 5, 16)

flatten_1: Flatten
input:

output:
(None, 1, 5, 16)

(None, 80)

dense_1: Dense
input:
output:

(None, 80)
(None, 10)

Q-values for 10 actions (5 APs x 2 CHs)

28 / 33

! Five APs are located uniformly and randomly

! Reward: The minimum individual throughput of five APs

Simplified version of [Nakashima+2020]
29 / 33

Image-to-decision proactive handover [Koda+2020]

! By using input images,
determine one BS from two candidate BSs

! The output of NNs is Q-value for input images

NN [16]

(Combination of
 CNN and
 LSTM)

Consecutive input
images

: Index of associated BS
: Remaining time step until handover process is completed : Action

Output layer

Output of NN
prior to output layer

30 / 33

Q-value selecting BSs 1 and 2

12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0

40
50

60
70

Time (s)

Ac
tio

n
va

lu
e

Action value for selecting BS 1
Action value for selecting BS 2

Handover
to BS 2

Handover
to BS 1 Without camera images

! Because the received power degrades sharply, handover decision is
conducted after degradation in general

12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0

10
15

20
25

30

Time (s)

Ac
tio
n−

va
lu

e

Action value for selecting BS 1
Action value for selecting BS 2

Handover
to BS 2

Handover
to BS 1

Action value degradation
ahead of blockage

With camera images

! Usage of camera images extends the state space, and thus proactive
handover is enabled

31 / 33

Summary

Part I

! Deep NNs are functions.

! Deep learning successfully predict future received power only from
past image sequences.

Part II

! Reinforcement learning is used to acquire the optimal sequence to
maximize the total reward.

! Deep neural networks are used for function approximation of Q
function (deep RL).

32 / 33

References I

[Koda+2020] Y. Koda, K. Nakashima, K. Yamamoto, T. Nishio, and
M. Morikura, “Handover management for mmWave networks
with proactive performance prediction using camera images
and deep reinforcement learning,” IEEE Trans. Cogn.
Commun. Netw., vol. 6, no. 2, Feb. 2020.

[Liew+2010] S. C. Liew, C. H. Kai, H. C. Leung, and P. Wong,
“Back-of-the-envelope computation of throughput
distributions in CSMA wireless networks,” IEEE Trans.
Mobile Comput., vol. 9, no. 9, Sep. 2010.

[Nakashima+2020] K. Nakashima, S. Kamiya, K. Ohtsu, K. Yamamoto,
T. Nishio, and M. Morikura, “Deep reinforcement
learning-based channel allocation for wireless LANs with
graph convolutional networks,” IEEE Access, vol. 8, Feb.
2020.

[Nishio+2019] T. Nishio, H. Okamoto, K. Nakashima, Y. Koda,
K. Yamamoto, M. Morikura, Y. Asai, and R. Miyatake,
“Proactive received power prediction using machine learning
and depth images for mmWave networks,” IEEE J. Sel.
Areas Commun., vol. 37, no. 11, Nov. 2019.

33 / 33

Demonstration of machine learning function

orchestrator (MLFO) via reference implementations

(ITU-ML5G-PS-024)

Shagufta Henna, LYIT, 31 July 2020

Register here
Join us on Slack

OrganizerSponsors

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

Analysis on route information failure in IP core
networks by NFV-based test environment.

ITU-ML5G-PS-(KDDI)

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

Agenda

1. Data set

2. How to use the data set

3. Network configuration for evaluation

4. Use cases of analysis

5. Submission

2

1. Dataset

Category File Name Description Data format Time zone (1)

Label
Failure-
management

Event date (failure and recovery) and event types,
which are listed along the time series

json UTC

Data

Virtual-
Infrastructure

Performance monitoring data sets on instances and
virtual network functions gathered from openstack
ceilometer, which are listed along the time series

json JST

Physical-
Infrastructure

Performance monitoring data sets gathered from
the physical server under openstack, which are
listed along the time series

json JST

Network-Device
Performance monitoring information and BGP route
information gathered from NEs under the virtual IP
network, which are listed along the time series

json JST

3

Four types of data sets for learning and evaluation are provided to
participants as follows.

(1) The time zone differs between those of the label and the data due to the system configuration.
9 hours difference exists between UTC and JST.

1. Data collection principles

4

In order create data sets, the data collector was developed to collects and stores data sets every minute from
the network. Once a failure is intentionally caused and recovered, the network indicates a failure or normal
status after a period of transition, corresponding to failure data (orange arrows) and recovery data (blue
arrows). The period of transition depends on a failure scenario and enough guard time is desired to be
considered. The time interval between a failure and a recovery is 5 min.

Failure Generator

Data Collector

Virtual Network Under Test

Failure data Recovery data

Failure
Conver-
gence

Recovery
Conver-
gence

Failure
scenario 1
execution

Recovery
scenario 1
execution

Failure
Scenario 2
exection

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

Data
Collect
Store

5min

Unstable data Unstable data

Data
Collect
Store

Time

5min

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

Data set files for learning

2. How to use the dataset

Two types of dataset files for learning and evaluation are provided to participants. The
dataset files for learning can be used for training AI models, and the dataset files for
evaluation can be used for evaluating performance of the trained model.

The dataset files for learning corresponds to use cases when all failure scenarios (shown in
Chapter 4) are comprehensively invoked at all possible failure points. The dataset files for
evaluation corresponds to the case when a combination of a failure scenario and a failure
point is randomly and limitedly generated.

5

Data Preprocessing

Training Evaluation

Failure-
Management.json

Virtual-Infrastructure
.json

Physical-
Infrastructure.json

Network-Device.json

Data set files for evaluation

Failure-
Management.json

Virtual-Infrastructure
.json

Physical-
Infrastructure.json

Network-Device.json

Trained Model

Copyright(C) 2020 KDDI Research, Inc. All Rights Reserved.

NW Emulator

5G Core NW

3. Network Topology

◼ Physical topology
The target of data collection is an IP core network, which connects the 5G core network
for the Internet connectivity. The IP core network totally consists of 5 network
elements, where TR-01, 02 are an IP core node, IntGW-01, 02 are an Internet gateway
router peered with other SPs, and RR-01 is a route reflector sharing route information.

6

Target NW
AS 2516 (OSPF)

TR-01

TR-02

5G

GW#01

5G

GW#02

IntGW

-01

IntGW

-02

RR#01

SP A
GW#01

SP B
GW#01

SP C
GW#01

SP A
GW#02

SP B
GW#02

SP C
GW#02

A

AS : 10

B

AS : 20

C

AS : 30

Gi5

Gi6

Gi7

Gi5

Gi6

Gi7

Gi2

Gi3

Gi2

Gi3

Gi2

Gi3

BGP Peering

Gi6

Gi6

Gi2

Gi3

Gi4

Gi2

Gi3

Gi4

3. Network Topology

◼ Logical Topology (BGP)

7

iBGP eBGP

AS 2516
IntGW

-01

IntGW

-02

RR#01

AS 10

AS 20

AS 30

SP A
GW#02

SP B
GW#02

SP C
GW#02

5GC

SP A
GW#01

SP B
GW#01

SP C
GW#01

4. Use cases

8

Scenario
UC
No.

Use Case Name Description

Route Information
Failure

UC1 BGP Injection Inject the anomaly route from another SP

UC2 BGP Hijack Hijack the own origin route by another SP

Interface Failure

UC3 Interface Down Cause an interface down

UC4 Packet Loss Cause the packet loss on an interface

UC5 Packet Delay Cause the delay of packets on an interface

Network
Element(NE)

Failure
UC6 NE Reboot Unplanned reboot of a NE

UC1 : BGP Injection

◼ Route Information in a normal state
Detailed routes of AS 10 are exchanged only with AS 20 by the coordinated operation between AS
10 and AS 20, therefore the traffic between AS2516 and AS 10 are transported following the
origin route advertised from AS 10.

9

iBGP eBGP

AS 2516
IntGW

-01

IntGW

-02

RR#01

AS 10

AS 20

AS 30

SP A
GW#02

SP B
GW#02

SP C
GW#02

5GC

SP A
GW#01

SP B
GW#01

SP C
GW#01

Origin
Detailed
Routes

Traffic between AS2516 and AS10

Origin Routes that AS 10 advertises to the Internet

Detailed

Route

Routes to control traffic within AS 10

(Usually not visible on the Internet)

UC1 : BGP Injection

◼ Route Information in an anomaly state
AS 20 happens to send detailed routes of AS 10 to AS 2516 due to an operational mistake. The
traffic is switched from the direct route to the AS 10 to bypass route via AS 20 according to the
longest match of detailed routes

iBGP eBGP

AS 2516
IntGW

-01

IntGW

-02

RR#01

AS 10

AS 20

AS 30

SP A
GW#02

SP B
GW#02

SP C
GW#02

5GC

SP A
GW#01

SP B
GW#01

SP C
GW#01

Origin Detailed
Routes

Origin Routes that AS 10 advertises to the Internet

Detailed

Route

Routes to control traffic within AS 10

(Usually not visible on the Internet)

Traffic between AS2516 and AS10

UC2 : BGP Hijack

◼ Route Information in a normal state
The traffic between AS 2516 and AS 10 is transported according to the advertised origin
routes of AS 2516.

iBGP eBGP

AS 2516
IntGW

-01

IntGW

-02

RR#01

AS 10

AS 20

AS 30

SP A
GW#02

SP B
GW#02

SP C
GW#02

5GC

SP A
GW#01

SP B
GW#01

SP C
GW#01

Origin

Origin AS2516 5G UE Pool

Address

Traffic between AS2516 and AS10

UC2 : BGP Hijack

◼ Route Information in an anomaly state
Malicious SP C intentionally advertised a part of the IP address space allocated to 5G
terminals in AS 2516 for route hijack, and caused traffic disruption from other operators
to AS 2516.

iBGP eBGP

AS 2516
IntGW

-01

IntGW

-02

RR#01

AS 10

AS 20

AS 30

SP A
GW#02

SP B
GW#02

SP C
GW#02

5GC

SP A
GW#01

SP B
GW#01

SP C
GW#01

Origin

Hijack RouteOrigin AS2516 5G UE Pool

Address

Traffic between AS2516 and AS10

UC3, 4, 5, 6

◼ Use case detail
Interface failures (packet loss, packet delay, down) and node failures (reboot) are
comprehensively (for learning) and randomly (for evaluation) caused.

13

NW Emulator

5G Core NW

Target NW
AS 2516 (OSPF)

TR-01

TR-02

5G

GW#01

5G

GW#02

IntGW

-01

IntGW

-02

RR#01

SP A
GW#01

SP B
GW#01

SP C
GW#01

SP A
GW#02

SP B
GW#02

SP C
GW#02

A

AS : 10

B

AS : 20

C

AS : 30

Gi5

Gi6

Gi7

Gi5

Gi6

Gi7

Gi2

Gi3

Gi2

Gi3

Gi2

Gi3

BGP Peering

Gi6

Gi6

Gi2

Gi3

Gi4

Gi2

Gi3

Gi4

UC3
Down

UC4
Loss

UC6
Reboot

UC5
Delay

failure-management sample

{

"_index": "failure_label_management-20200326",

"_type": "_doc",

"_id": "2020-03-26T13:16:29+0900",

"_version": 1,

"_score": null,

"_source": {

"scenario": "bgp-20200326-05",

"proc": 1,

"proc_type": 0,

"failure_type": "ixnetwork-bgp-injection-start",

"project": "bgpnw",

"sp": "A",

"original_sp": "B",

"started_at": "2020-03-26T13:16:29.296+09:00",

"stopped_at": "2020-03-26T13:16:38.619+09:00",

"status": "succeeded",

"@timestamp": "2020-03-26T13:16:29+0900"

},

"fields": {

"stopped_at": [

"2020-03-26T04:16:38.619Z"

],

"started_at": [

"2020-03-26T04:16:29.296Z"

]

},

"sort": [

1585196189296

]

}

14

Unique Key

Failure scenario

Failure execution start/end date and time

virtual-infrastructure sample

{

"_index": "virtual-infrastructure-bgpnw2-20200706",

"_type": "_doc",

"_id": "2020-07-06T13:06:00+0900",

"_version": 1,

"_score": null,

"_source": {

"projects": [

{

"name": "bgpnw2"

}

],

"devices": [

{

"id": "bb7b904e-d3f9-4f12-bf7a-4497436d9901",

"name": "IntGW-01",

"flavor": {

"id": "d7cfbc8a-0643-4587-b09a-bc47774c8c5b",

"name": "bgp.router",

"ram": 8192,

"vcpus": 4,

"disk": 0

},

"image": {

"id": "4cca1723-2565-4beb-9b89-0ba2f677b726",

"name": "csr1kv-9.16.09.04",

"min_ram": 0,

"min_disk": 0,

"size": 919863296,

"status": "active",

"container_format": "bare",

"file": "/v2/images/4cca1723-2565-4beb-9b89-0ba2f677b726/file",

"disk_format": "qcow2",

"visibility": "public",

"created_at": "2020-01-17T02:49:37Z",

"updated_at": "2020-01-17T02:49:43Z",

"metrics": {

"image-size": 919863296

}

},

"status": "ACTIVE",

"vm_state": "active",

"power_state": 1,

"progress": 0,

"availability_zone": "nova",

"compute": "openstack-wf",

"instance_name": "instance-00000009",

"created": "2020-01-24T04:04:22Z",

"updated": "2020-07-04T11:17:56Z",

"metrics": {

"disk-device-allocation": 499712,

"disk-device-capacity": 499712,

"disk-device-read-bytes": 0,

"disk-device-read-bytes-rate": 0,

"disk-device-read-latency": 0,

"disk-device-read-requests": 0,

"disk-device-read-requests-rate": 0,

"disk-device-usage": 499712,

"disk-device-write-bytes": 0,

"disk-device-write-bytes-rate": 0,

"disk-device-write-latency": 0,

"disk-device-write-requests": 0,

"disk-device-write-requests-rate": 0,

"compute-instance-booting-time": 34.576838,

"cpu": 27025792750000000,

"cpu-delta": 104060000000,

"cpu_util": 43.07878647215821,

"disk-allocation": 47431680,

"disk-capacity": 8590434304,

"disk-ephemeral-size": 0,

"disk-read-bytes": 229376,

"disk-read-bytes-rate": 0,

"disk-read-requests": 23,

"disk-read-requests-rate": 0,

"disk-root-size": 0,

"disk-usage": 47489024,

"disk-write-bytes": 2602914816,

"disk-write-bytes-rate": 480.35484069415025,

"disk-write-requests": 438803,

"disk-write-requests-rate": 0.083309873273019,

"memory": 8192,

"memory-resident": 4016,

"vcpus": 4

},

"project": "bgpnw2"

}

15

Unique Key

physical-infrastructure sample

{
"_index": "physical-infrastructure-bgpnw-20200331",
"_type": "_doc",
"_id": "2020-03-31T13:12:00+0900",
"_version": 1,
"_score": null,
"_source": {
"computes": [
{
"status": "enabled",
"service": {
"host": "compute01",
"disabled_reason": null,
"id": 11

},
"vcpus_used": 5,
"hypervisor_type": "QEMU",
"local_gb_used": 55,
"vcpus": 48,
"hypervisor_hostname": "compute01",
"memory_mb_used": 8704,
"memory_mb": 257446,
"current_workload": 0,
"state": "up",
"host_ip": "172.16.1.241",
"free_disk_gb": 383,
"hypervisor_version": 2011001,
"disk_available_least": 334,
"local_gb": 438,
"free_ram_mb": 248742,
"id": 1,
"metrics": {
"compute-node": {
"compute-node-cpu-frequency": 2236,
"compute-node-cpu-idle-percent": 99,
"compute-node-cpu-idle-time": 226222739380000000,
"compute-node-cpu-iowait-percent": 0,
"compute-node-cpu-iowait-time": 2332730000000,
"compute-node-cpu-kernel-percent": 0,
"compute-node-cpu-kernel-time": 5997980080000000,
"compute-node-cpu-percent": 0,
"compute-node-cpu-user-percent": 0,
"compute-node-cpu-user-time": 3740360490000000

},
"hardware": {
"hardware-cpu-load-15min": 0.13,
"hardware-cpu-load-1min": 0.27,
"hardware-cpu-load-5min": 0.215,
"hardware-cpu-util": 0,
"hardware-disk-size-total": 0,
"hardware-disk-size-used": 0,
"hardware-memory-buffer": 1196200,
"hardware-memory-cached": 15348682.666666666,
"hardware-memory-swap-avail": 2097148,
"hardware-memory-swap-total": 2097148,
"hardware-memory-total": 263624884,

"hardware-memory-used": 26181624,
"hardware-network-ip-incoming-datagrams": 1488267445,
"hardware-network-ip-outgoing-datagrams": 2378446807,
"hardware-system_stats-cpu-idle": 99,
"hardware-system_stats-io-incoming-blocks": 248599704,
"hardware-system_stats-io-outgoing-blocks": 1200049368

},
"hardware-disk": [
{
"name": "_dev_sda2",
"hardware-disk-size-total": 459924552,
"hardware-disk-size-used": 44851038

},
{

"hardware-network": [],
"hardware-ipmi-fan": [
{
"name": "fan2a_(0x3a)",
"hardware-ipmi-fan": 3840

},
{
"name": "fan6a_(0x42)",
"hardware-ipmi-fan": 3720

},
{
"name": "fan3a_(0x3c)",
"hardware-ipmi-fan": 3840

},
{
"name": "fan4b_(0x3f)",
"hardware-ipmi-fan": 4080

},
{
"name": "fan6b_(0x43)",
"hardware-ipmi-fan": 4200

},
{
"name": "fan3b_(0x3d)",
"hardware-ipmi-fan": 4080

},
{
"name": "fan5a_(0x40)",
"hardware-ipmi-fan": 3840

},
{
"name": "fan5b_(0x41)",
"hardware-ipmi-fan": 4080

},
{
"name": "fan1b_(0x39)",
"hardware-ipmi-fan": 4080

},
{

16

Unique Key

Network-Device sample

{

"_index": "network-device-bgpnw-20200301",

"_type": "_doc",

"_id": "2020-03-01T12:01:00+0900",

"_version": 1,

"_score": null,

"_source": {

"devices": [

{

"name": "IntGW-01",

"modules": {

"openconfig-interfaces": {

"interfaces": {

"interface": [

{

"name": "GigabitEthernet1",

"config": {

"name": "GigabitEthernet1",

"type": "ianaift:ethernetCsmacd",

"description": "ManagementIF",

"enabled": true

},

"state": {

"name": "GigabitEthernet1",

"type": "ianaift:ethernetCsmacd",

"enabled": true,

"ifindex": 1,

"admin-status": "UP",

"oper-status": "UP",

"last-change": 1580092289000921000,

"counters": {

"in-octets": 4965172089,

"in-unicast-pkts": 76964557,

"in-broadcast-pkts": 0,

"in-multicast-pkts": 0,

"in-discards": 0,

"in-errors": 0,

"in-unknown-protos": 0,

"in-fcs-errors": 0,

"out-octets": 1712733927,

"out-unicast-pkts": 152852647,

"out-broadcast-pkts": 0,

"out-multicast-pkts": 0,

"out-discards": 0,

"out-errors": 0,

"last-clear": 1580092091000706000

}

},

17

Unique Key

5. Submission

Create and train a model of AI/ML by the data set for learning

and verify the performance of the derived model by the data set

of evaluation in terms of anomaly detection and root cause

analysis.

Submit a power point file with a pdf format indicating the

results and a demonstration video showing predicting

performance.

18

Contact information

info_itu5G_jp@lists.cc1g.kddi-research.jp

19

1 © NEC Corporation 2020

【ITU-ML5G-PS-031】

Network State Estimation by Analyzing Raw Video Data

2020/7/29

NEC Corporation, Japan

ITU AI/ML in 5G challenge

Agenda

1. Introduction

2. Challenge

3. Dataset

4. Information

1. Introduction

4 © NEC Corporation 2020

Background – COVID19 pandemic

The importance of interactive live video

streaming services,

e.g., telework system, is increasing!!

COVID-19

5 © NEC Corporation 2020

Social problem

OTT services

The Internet

For avoiding congestion in the Internet,

video traffic reduction is required!!

Netflix

YouTube

Amazon

...

Interactive video

streaming services

zoom

Cisco Webex

gotomeeting

...

6 © NEC Corporation 2020

Difference between OTT services and interactive services

Service provided by OTT Interactive services

OTT providers,
e.g., Netflix and YouTube

Standard resolution

720p → 480p

Deliver

Consumers
Consumer

Consumer

Resolution depends on

player setting

e.g., zoom

video volume depends on player’s

display size

7 © NEC Corporation 2020

Who needs to know network state?

Service provided by OTT Interactive services

OTT providers need to

know network states.

Consumers need to

know network states.

Interactive video streaming services force network state

estimation for control video traffic to consumers.

8 © NEC Corporation 2020

Relationship between network state & video images

Good network condition

Bad network condition

Block noise occurs...
Streaming

server

What happens in the network???

9 © NEC Corporation 2020

Example (Original vs Received)

Original video Received video

Throughput: 1100kbps

Loss rate: 0.1%

Network state

10 © NEC Corporation 2020

Background

Conventional approach Practical case

KPI is important for

evaluate their

(researcher’s) approaches.

e.g., bit rate

Raw video image is

important.

This challenge is the first step to understand

relationship between raw video images and network state.

2. Challenge

12 © NEC Corporation 2020

Understanding network state from raw video

Video streaming serverClient

Open video dataset
e.g., YouTube 8M

https://research.google.com/youtube8m/

DummyNet

Received video
(including block noise) Live video streaming

via RTP

Provided dataset
Original video data (.mp4)

Received video data (.mp4)

Task for participants
Estimate network state, i.e., throughput/loss ratio.

Train their ML-based method by using given dataset.

Performance measure is MAE.

13 © NEC Corporation 2020

Training/test process

Original video (.mp4)

Received videos (.mp4)

Training phase

・
・
・

Network condition

1100kbps, 0.001% loss

1200kbps, 0.001% loss

2000kbps, 0.001% loss

ML

Original

video (.mp4)

Received

video (.mp4)

Test phase

Network

condition

1100kbps, 0.001% loss

Trained ML

Output

Input

3. Dataset

15 © NEC Corporation 2020

Dataset

Provided dataset

One original video data (.mp4)

Many received video data (.mp4)

Original video

Received video

original.mp4

videoid_1100kbps_001.mp4

videoid_1200kbps_001.mp4

・
・
・

・
・
・

• Traffic rate: from 1100kbps to

2000kbps at 100kbps intervals

• Packet loss ratio: 0.001%, 0.01%,

0.025%, 0.05%, 0.1%

Dummynet configuration

16 © NEC Corporation 2020

Dataset

▌You can download our dataset from RISING web site.
⚫https://www.ieice.org/~rising/AI-5G/dataset/theme2-NEC/dataset_and_issue.tar.gz

▌Dataset (dataset_and_issue.tar.gz, 24GB) includes following files.

⚫dataset

• original: original videos for training

• received: received videos named <video_id>_<bandwidth>_<loss ratio>.mp4 for

training

⚫issue

• original: original videos for network state estimation

• received: received videos for network state estimation

⚫README.md

https://www.ieice.org/~rising/AI-5G/dataset/theme2-NEC/dataset_and_issue.tar.gz

17 © NEC Corporation 2020

Performance measure

▌For each of throughput and loss ratio, MAE is calculated

as performance measure. (n is the number of test videos)

𝐌𝐀𝐄 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧 − 𝐀𝐧𝐬𝐰𝐞𝐫

18 © NEC Corporation 2020

** IMPORTANT ** - Submission

▌Participants need to submit only report.
⚫Report includes the following items at least.

1. Explanation of your method/approach

2. Evaluation results (MAE, See “Evaluation criteria”) for provided data set

3. Consideration

⚫Report format: A4 size, pdf, 4 pages at most.

▌All submissions will be evaluated in terms of

1. Performance measure (MAE)

2. Technical excellence

4. Information

20 © NEC Corporation 2020

Information

▌Detailed information

⚫https://www.ieice.org/~rising/AI-5G/

⚫Updated problem statement is shown in the web page!!

▌Contact by e-mail

⚫5gc@nakao-lab.org or rising-itu-support@mail.ieice.org

⚫Subject of E-mail has to be [ITUML5G-PS-031] or [ITU-JP-Theme2].

https://www.ieice.org/~rising/AI-5G/
mailto:5gc@nakao-lab.org
mailto:rising-itu-support@mail.ieice.org

