

DIE UNIVERSITA'DEGLI STUDI DI TI • NAPOLI FEDERICO II

TOW ARD EFFECTIVE NETWORK TRAFFIC ANALYTICS OF MOBILE APPS VIA DEEP LEARNING

Domenico Ciuonzo, Assistant Professor University of Napoli Federico II, Italy domenico.ciuonzo@unina.it

Dec. 2nd, 2020 ITU Al/ ML in 5G Challenge webinar series

OUTLINE

- Mobile Traffic and Traffic Classification/Prediction (TC/TP)
- Multi-Classification Approaches for Mobile TC
- Mobile TC using **Deep Learning (DL)**
- The use of Multimodal-DL and Improvements
- Multipurpose TC via Multitask DL
- Reproducibility and Dataset Quality
- Mobile App TP: A first shot
- Take-Home Messages

MOBILE TRAFFIC GROW TH

Massive usage of handheld devices has significantly changed the traffic

- traversing home and enterprise networks
- connecting contents and services over the Internet

Mobile (46% CAGR)

MOBILE TRAFFIC CLASSIFICATION

What is flowing through my (mobile) network?

Need for associating flows (or other classification objects) with the mobile apps that generate them and predicting their behaviour

Source: Sandvine,

The Mobile Internet Phenomena Report, 2019 & 2020

MOBILE TRAFFIC ANALYSIS: MAIN DRIVERS

Classification of mobile traffic **provides valuable information** for

- Advertisers
- Insurance companies
- Security agencies
- Infrastructure Operators

But also raises privacy issues

- Context-sensitive apps
- Bring your own device policy
- Indiscriminate surveillance

MICROMEDEX FREE

DRUG REFERENC

EARLY DAYS OF TC: PORT+DPI

- PortLoad* (fast & privacyfriendly):
 - needs the 1st packet only (with direction)
 - uses fixed fields (protocol)
 - uses few data (fixed values in fixed positions, such as port inspection)

	Accuracy on applications			
Classifier	sessions	bytes		
PortLoad	74.24%	97.83%		
Port-based	19.57%	25.12%		

*Patent No.: NA2010A000011

Time (sec)

	Mean Time	Mean Time	Variance
Classifier	(μsec)	(vs Port-based)	(μsec^2)
Port-based	2.48	1.0	0.88
PortLoad	6.99	2.8	11.15
L7-Filter	211.4	85.2	47057.88

MOBILE TRAFFIC ANALYSIS: MAIN CHALLENGES

TRAFFIC CLASSIFICATION: FEATURE DESIGN

Statistical features

Feature Extractor

- PL-IAT sequences
- PL-IAT histograms
- PL-IAT transition probabilities
- Other features (packet ratio, etc.)

ML Algorithm

Machine Learning

Classifiers

- k-NN / K-dimensional trees
- SVM
- Bayesian Approaches

TRAFFIC CLASSIFICATION: FEATURE DESIGN

Statistical

features

Extra

- Feature Extractor
- PL-IAT sequences
- PL-IAT histograms
- PL-IAT transition probabilities
- Other features (packet ratio, etc.)

ML Algorithm Classifiers

- k-NN / K-dimensional trees
- SVM
- Bayesian Approaches

TAKING THE BEST FROM EACH STATE-OF-THE-ART CLASSIFIER

DATASET DESCRIPTION

fic

DL classifiers are compared on three datasets of real-user traffic and labeling each trace with the generating app run separately

MCS TRAFFIC CLASSIFICATION: PERFORMANCE

49 apps	Accuracy [%]	Precision [%]	Recall [%]	F-Measure [%]
Oracle	87.6	N/ D	83.6	N/ D
Best Soft Combiner (KL- weights)	79.2	80.6	73.6	83.7
Best Hard Combiner (Naive Bayes)	75.0	77.4	69.7	75.7
Best Classifier (Random Forest)	72.8	74.7	64.1	72.3

MCS TRAFFIC CLASSIFICATION: PERFORMANCE

BEYOND MACHINE LEARNING (ML) TRAFFIC CLASSIFIERS

MOBILE TC USING DL: RESEARCH GOAL

Naïve adoption of DL techniques to mobile TC may imply misleading design choices and lead to biased conclusions

We propose the **design** of DL-based mobile traffic classifiers resorting on a **systematic framework** expressly developed for their comparison

DEFINING DL-BASED TC W ORKFLOW

The proposed framework dissects the TC problem from different viewpoints

- **TC object** adopted
- Type and amount of input data fed to the DL classifier
- DL architecture employed
- Required set of **performance measures**

WHICH TRAFFIC OBJECT?

The definition of a specific TC object determines how the traffic is segmented into multiple discrete traffic units

The majority of works approaching TC using DL considered

- Flows
- **Biflows**

WHICH & HOW MUCH INPUT DATA?

There is no feature extraction, only need to provide the input

- First N bytes of TC-object payload $[N \ge 1] \rightarrow L7-N$ First 784/1000 bytes of L7 payload of each biflow
- First *N* bytes of TC-object raw data $[N \ge 1] \rightarrow ALL-N$ First 784/1000 bytes of PCAP raw data of each biflow
- Informative fields of first N_p packets [20 x 6] → MAT
 (1) Source port, (2) Destination port, (3) Payload length,
 (4) TCP window size, (5) Inter-arrival time, (6) Packet direction

WHICH DL ARCHITECTURE?

DL classifiers are trained to minimize categorical cross-entropy

- Stacked AutoEncoder (SAE) fed with L7-1000 [1]
- Convolutional Neural Network (CNN)
 - **1D-CNN** fed with L7-784 and ALL-784 [2]
 - **2D-CNN** fed with L7-784, ALL-784 [3], and MAT [4]
- Long Short-Term Memory (LSTM) fed with MAT [4]
- Hybrid DLarchitecture (LSTM + 2D-CNN) fed with MAT [4]

HOW TO EVALUATE PERFORMANCE?

Comparison of DL classifiers for mobile TC benefits from a comprehensive performance evaluation framework based on a *stratified 10-fold validation*

THE BIGGER PICTURE ON PERFORMANCE

DON'T TRUST EVERY INPUT DATA

CAN PERFORMANCE BE IMPROVED W.R.T. BASELINE CLASSIFIER?

CAN PERFORMANCE BE IMPROVED W.R.T. BASELINE CLASSIFIER?

CAN PERFORMANCE BE IMPROVED W.R.T. BASELINE CLASSIFIER?

NO NEED TO CLASSIFY ALL THE INSTANCES: REJECT OPTION

Performance improvement with a negligible ratio of unclassified samples evident only for multi-class datasets To achieve > 84% F-measure, rejected

- 10% of flows for Android and iOS
- 40% of flows for FB/ FBM

GOING DEEP: CONFUSION MATRICES

1D-CNN (L7-784) and LSTM achieve almost-uniform error patterns

2D-CNN (L7-784) entails a prediction imbalance toward FB app as a consequence of the higher number of samples in the dataset

SOME THOUGHTS

- Existing proposals only exploited one kind of traffic "modality"
- Many of the architectures proposed were ad-hoc
- In some cases, the class imbalance effect is strong

WHAT IS NEXT? MIMETIC <u>MultI-modal DL-based</u> <u>MobilE</u> <u>TraffIc</u> <u>Classification</u>

(I) Pre-training

(II) Fine-tuning

Frozen

Softma: Layerp

Stubs

- Capitalization of heterogeneous of traffic data
- Capturing both intra- and inter-modalities

• Architectural Overview

WHAT IS NEXT? MIMETIC <u>MultI-modal DL-based</u> <u>MobilE</u> <u>TraffIc</u> <u>Classification</u>

- Capitalization of heterogeneous of traffic data
- Capturing both intra- and inter-modalities

(I) Pre-training

* With cost-sensitive learning!

MIMETIC PERFORMANCE

+1.16% G-Mean

	Architecture	Accuracy	F-measure	G-mean	
	MIMETIC	79.98 (± 0.49)	$79.63~(\pm~0.51)$	79.53 (± 0.60)	
$ I \left\{ II \left\{ III \left\{ III \right\} \right\} \right\} $	1D-CNN [99] (L7-784) HYBRID [96] (MAT-20) MLP-1 (L7-784) MLP-1 (MAT-20) Tay_RF [42] (flow-based) MV SOA	76.37 (± 0.73) 74.26 (± 0.98) 74.46 (± 0.88) 68.93 (± 1.32) 79.56 (± 0.62) ♦ 75.13 (± 0.92) 78.86 (± 0.79) †	$75.56 (\pm 1.01) 73.23 (\pm 0.95) 73.89 (\pm 0.86) 67.86 (\pm 0.94) 78.73 (\pm 0.62) \\ 74.48 (\pm 1.14) 78.37 (\pm 1.00) \\ \dagger$	$74.79 (\pm 1.76) 72.18 (\pm 1.05) 73.55 (\pm 0.89) 66.98 (\pm 0.75) 78.37 (\pm 0.76) 74.02 (\pm 1.65) 78.06 (\pm 1.61) †$	
	TLF	74.61 (± 0.15) \mp	$73.60 (\pm 1.80)$	$72.59 (\pm 2.14)$	
	MIOB-C MIOB-FT	$+ 0.42 (\pm 0.65)$ + 1.12 (± 0.89)	$+ 0.90 (\pm 0.68)$ + 1.26 (± 1.14)	+ 1.16 (± 0.99) + 1.47 (± 1.84)	

(MIOB-C)

Max Gain over best Classifier

(MIOB-FT)

Max Gain over best fusion technique

Classifier fusion

MIMETIC PERFORMANCE

+8.66% F-measure on the iOS dataset

	A 7	Android			iOS		
	Architecture	Accuracy F-measure		G-Mean	Accuracy	<i>F</i> -measure	G-Mean
	MIMETIC	$89.49~(\pm~0.32)$	$81.51~(\pm~0.93)$	$91.96~(\pm~0.95)$	$89.14~(\pm~0.82)$	$82.99~(\pm~1.14)$	$92.25~(\pm~0.84)$
{I} {	1D-CNN [99] (L7-784)	$85.70 (\pm 0.45) \blacklozenge$	$78.68 (\pm 1.20) \blacklozenge$	$86.82 (\pm 0.87) \blacklozenge$	$82.64 (\pm 1.63) \blacklozenge$	$74.34 (\pm 1.29) \blacklozenge$	84.00 (± 1.31) ♦
1	HYBRID $[96]$ (MAT-20)	$77.95~(\pm 0.41)$	$64.52~(\pm 1.17)$	$76.35~(\pm 1.45)$	$69.17~(\pm 0.64)$	$58.75~(\pm 0.76)$	$72.17~(\pm 0.75)$
ا ۲۲	MLP-1 (L7-784)	$78.71~(\pm 0.65)$	$69.79~(\pm 1.17)$	$81.52~(\pm 1.38)$	$77.16~(\pm~0.63)$	$67.61~(\pm~1.07)$	$80.11~(\pm~0.99)$
II (MLP-1 (MAT-20)	$64.94~(\pm 0.47)$	$48.26~(\pm 0.96)$	$63.10~(\pm 1.07)$	$54.42 \ (\pm \ 0.63)$	$40.86~(\pm~1.04)$	$57.56~(\pm 1.03)$
III	Tay_RF $[42]$ (flow-based)	$84.78~(\pm 0.30)$	$75.49 \ (\pm \ 0.89)$	$83.86~(\pm 0.58)$	$80.77~(\pm~0.84)$	$72.39~(\pm~1.39)$	$81.88~(\pm~1.27)$
(MV	$80.41~(\pm 0.40)$	$71.28~(\pm 0.85)$	$81.74~(\pm 0.77)$	$77.24 \ (\pm \ 0.62)$	$66.49~(\pm 0.97)$	$78.92~(\pm 0.97)$
IV	SOA	$87.08 (\pm 0.29)$ ‡	$80.07 (\pm 0.81)$ ‡	$87.00 \ (\pm \ 0.80) \ddagger$	$84.68 (\pm 0.55)$ ‡	$75.94 (\pm 1.10)$ ‡	$84.15 (\pm 0.96)$ ‡
l	TLF	$68.87 (\pm 1.05)$	$48.82 (\pm 1.92)$	$62.55 (\pm 1.86)$	$62.01 (\pm 0.97)$	$39.07 (\pm 1.52)$	$54.07 (\pm 1.94)$
	MIOB-C	+ 3.79 (± 0.59)	$+2.83 (\pm 1.66)$	$+5.14 (\pm 1.06)$	$+ 6.50 (\pm 2.12)$	$+8.66(\pm 1.77)$	+ 8.25 (± 1.72)
	MIOB-FT	+ 2.40 (± 0.48)	$+ 1.44 (\pm 1.56)$	$+ 4.96 (\pm 1.46)$	$+4.46 (\pm 1.01)$	$+7.05 (\pm 1.43)$	+ 8.10 (± 1.27)

(MIOB-C)

Max Gain over best Classifier

(MIOB-FT)

Max Gain over best fusion technique

(I) Best single-modality (III) ML state-of-the-art

II) Shallow NN

V) Classifier fusion

MULTIMODAL-DL HAS LOW ER TRAINING COMPLEXITY

No. of parameters [Mi]	FB/ FBM	Android	iOS
MIMETIC	0.93	1.62	1.61
Best DL (1D-CNN)	5.82	5.87	5.86
LSTM+2D-CNN	0.42	0.74	0.74
DL Late Fusion (TLF)	6.24	6.61	6.60

Multimodal-DL shows an RTPE > 3.5x lower than its "main competitor" 1D-CNN (L7-784)

MIMETIC: FURTHER GAINS WITH CENSORING

FINE-GRAINED PERFORMANCE IMPROVEMENT

in the three cases considered

TOW ARD A GENERAL DL-BASED TC FRAMEW ORK

Requirement: Multiple TC desiderata

PUSHING FORWARD: DISTILLER <u>Deep Learning-baSed MulTimodal MuLtitask</u> <u>EncRypted Traffic Classification</u>

- Capturing both intra- and inter-modalities (multimodal)
- Able to classify according to different views (multitask)

(Architectural Overview)

DISTILLER: FOCUS ON TRAINING

p-th modality loss function

$$\mathcal{L}_p(\theta_p, \theta_p^{\text{stub}}) \triangleq \sum_{\nu=1}^V \lambda_{\nu} \left\{ \sum_{m=1}^M \text{CE}(t^{\nu}(m), c^{\nu}(m) [\theta_p, \theta_p^{\text{stub}}]) \right\}$$

(II) Fine-tuning

Overall loss function $\mathcal{L}\left(\theta_{1:P}^{\uparrow}, \theta_{0}\right) \triangleq \sum_{\nu=1}^{V} \lambda_{\nu} \sum_{m=1}^{M} \operatorname{CE}(\boldsymbol{t}^{\nu}(m), \, \boldsymbol{c}^{\nu}(m)[\theta_{1:P}^{\uparrow}, \, \theta_{0}])$

DISTILLER: TAKING ONE INSTANCE

DISTILLER: PERFORMANCE IN THE MULTI-TASK WILD

Verall best classifier

Overall best baseline

Rank	Multitask Classifier	T ₁ - Encapsulation		T ₂ - Traffic Type		T ₃ - Application		RTPF [s]	
Kalik	Runk	Multuask Classifier	Accuracy [%]	F-measure [%]	Accuracy [%]	F-measure [%]	Accuracy [%]	F-measure [%]	KITE [5]
I	DISTILLER	93.75 (± 0.73) P	91.95 (± 0.67) \P	80.78 (± 0.95) P	78.72 (± 1.05) \P	77.63 (± 0.66) \P	66.44 (± 1.76) P	5.99 (± 0.13)	
II	1D-CNN (PAY) [13]	87.47 (± 0.29)	83.50 (± 0.75)	73.14 (± 0.79) 🛧	71.14 (± 0.87) 🛧	72.73 (± 0.77) 🛧	61.35 (± 1.60) 🛧	13.83 (± 1.67)	
III	2D-CNN (PAY) [20]	87.43 (± 0.66)	83.51 (± 0.46)	71.86 (± 0.95)	69.77 (± 0.96)	71.45 (± 1.13)	59.29 (± 2.06)	40.94 (± 3.57)	
IV	MLP (PAY) [26]	86.95 (± 0.65)	82.38 (± 1.12)	70.67 (± 0.64)	68.14 (± 0.72)	69.50 (± 0.97)	56.44 (± 2.45)	2.58 (± 0.36)	
V	MLP (HDR) [26]	88.71 (± 0.37) 🛧	84.94 (± 0.48) 🛧	68.57 (± 0.51)	65.87 (± 0.55)	63.97 (± 1.02)	51.14 (± 1.28)	2.24 (± 0.17)	
VI	MLP (PAY) [22]	85.28 (± 0.66)	81.16 (± 0.55)	67.60 (± 1.10)	64.68 (± 1.36)	65.39 (± 1.06)	51.78 (± 1.31)	0.75 (± 0.10) 🛧 🏆	
VII	HYBRID (HDR) [15]	87.11 (± 1.88)	82.82 (± 1.28)	66.00 (± 2.61)	62.40 (± 4.34)	60.17 (± 3.70)	50.49 (± 2.40)	3.34 (± 0.38)	
VIII	MLP (HDR) [22]	86.53 (± 0.65)	81.55 (± 1.03)	62.86 (± 0.92)	59.43 (± 1.40)	59.34 (± 0.88)	44.20 (± 1.22)	0.79 (± 0.02)	
IX	1D-CNN (HDR) [25]	82.95 (± 1.33)	76.24 (± 2.55)	59.09 (± 3.34)	54.75 (± 2.24)	56.54 (± 2.65)	$40.87 (\pm 2.13)$	$1.70 (\pm 0.02)$	
	DISTILLER Gain	+ 6.28 (± 0.80)	+ 8.45 (± 1.13)	$+7.65(\pm 0.20)$	+ 7.58 (± 0.95)	+ 4.90 (± 0.60)	+ 5.09 (± 1.17)	- 7.84 (± 1.67)	

best baseline identified

DISTILLER: ACHIEVING BETTER CALIBRATION

DISTILLER: ACHIEVING BETTER CALIBRATION

DISTILLER: ACHIEVING BETTER CALIBRATION

BENCHMARKING TC: NEED FOR QUALIFIED DATASETS

Data-driven TC methodologies require reliably labeled datasets to ensure proper design, realization, and validation

No Bots allowed

Reproducible architecture for generating mobile-app traffic and automatically creating the related high accurate ground-truth

MIRAGE: OVERVIEW Architecture **Capture System** Capture server Provides connectivity ((q)) Rooted Android device to mobile devices Experimenter •1)) WiFi access point Collects **network** • Performs the **Ground-Truth** Internet traffic and building system-call log-files Constructs the final • Can handle **multiple** 1 mobile-app traffic dataset •))) **Analysis System devices** at the same -Extracts the MIRAGE-2019 time USB hub public version

Functional overview

MIRAGE-2019 dataset is available on:

http://traffic.comics.unina.it/mirage

MIRAGE IN A NUTSHELL

Apublic human-generated dataset for mobile traffic analysis

- 40 Android apps (no video apps)
- 16 different categories
- No less than 2500 bi-flows for each app
- Each bi-flow is labeled with the Android package-name of generating app

MIRAGE-2019 dataset is available on: http://traffic.comics.unina.it/mirage

MOBILE APPS TRAFFIC PREDICTION

Need for fine-grained network management:

- Traffic is dynamic and of heterogeneous composition
- One predictor for all traffic is not enough
- Idea: One-predictor per app/group

MOBILE TP: INITIAL RESULTS

Results come from a 10-fold cross-validation process - Values are shown as μ and σ

DL classifiers fed with **raw** network traffic data likely lead to **misleading performance results**

 Skim informative and unbiased information from input traffic data to DL classifiers

DLclassifiers fed with **raw** network traffic data likely lead to **misleading performance results**

No "killer" DL architecture for mobile TC

- Skim informative and unbiased information from input traffic data to DL classifiers
- Need for advanced hybrid DL architectures with automatically tunable hyper-parameters

DLclassifiers fed with **raw** network traffic data likely lead to **misleading performance results**

No "killer" DL architecture for mobile TC

Lack of a comprehensive and principled approach to DL-based classifiers applied to mobile TC

- ✓ Skim informative and unbiased information from input traffic data to DL classifiers
- Need for advanced hybrid DL architectures with automatically tunable hyper-parameters
- First attempt to the formalization of a comprehensive performance evaluation framework

DLclassifiers fed with **raw** network traffic data likely lead to **misleading performance results**

No "killer" DL architecture for mobile TC

Lack of a comprehensive and principled approach to DL-based classifiers applied to mobile TC

Lack of general architecture for solving multipurpose TC tasks with high performance

- Skim informative and unbiased information from input traffic data to DL classifiers
- Need for advanced hybrid DL architectures with automatically tunable hyper-parameters
- First attempt to the formalization of a comprehensive performance evaluation framework
- Aframework for the design of Multimodal Multitask DL Traffic Classifiers

DLclassifiers fed with **raw** network traffic data likely lead to **misleading performance results**

No "killer" DL architecture for mobile TC

Lack of a comprehensive and principled approach to DL-based classifiers applied to mobile TC

Lack of general architecture for solving multipurpose TC tasks with high performance

Lack of available datasets for experimentation

- Skim informative and unbiased information from input traffic data to DL classifiers
- Need for advanced hybrid DL architectures with automatically tunable hyper-parameters
- First attempt to the formalization of a comprehensive performance evaluation framework
- Aframework for the design of Multimodal Multitask DL Traffic Classifiers
- ✓ Proposing the MIRAGE project

DLclassifiers fed with **raw** network traffic data likely lead to **misleading performance results**

No "killer" DL architecture for mobile TC

Lack of a comprehensive and principled approach to DL-based classifiers applied to mobile TC

Lack of general architecture for solving multipurpose TC tasks with high performance

Lack of available datasets for experimentation

Need for **fine-grained prediction** of mobile traffic

- Skim informative and unbiased information from input traffic data to DL classifiers
- Need for advanced hybrid DL architectures with automatically tunable hyper-parameters
- First attempt to the formalization of a comprehensive performance evaluation framework
- Aframework for the design of Multimodal Multitask DL Traffic Classifiers
- ✓ Proposing the MIRAGE project
- Investigating DL-based biflow-level apptailored predictors

ESSENTIAL REFERENCES

- 1. "The applications of deep learning on traffic identification", BlackHat USA, 2015
- 2. "Appscanner: Automatic fingerprinting of smartphone apps from encrypted network traffic", IEEE EuroS& P 2016
- 3. "End-to-end encrypted traffic classification with one-dimensional convolution neural networks", IEEE ISI 2017
- 4. "Malware traffic classification using convolutional neural network for representation learning", IEEE ICIN, 2017
- 5. "Network traffic classifier with convolutional and recurrent neural networks for Internet of Things", IEEE Access, 2017
- 6. "Deep packet: A novel approach for encrypted traffic classification using deep learning", Soft Computing, 2020
- 7. "Automatic multi-task learning system for abnormal network traffic detection", International Journal of Emerging Technologies in Learning, 2018
- 8. "Common knowledge based and one-shot learning enabled multi-task traffic classification", IEEE Access 2019
- 9. "FS-Net: A flow sequence network for encrypted traffic classification", IEEE INFOCOM, 2019
- 10 "Multi-task network anomaly detection using federated learning", ACM SolCT, 2019

...AND OUR REFERENCES

- 1. "PortLoad: taking the best of two worlds in traffic classification", IEEE INFOCOM Workshops, 2010
- 2. "Multi-Classification Approaches for Classifying Mobile App Traffic", Elsevier Journal of Network and Computer Applications, 2018
- 3. "Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges", IEEE Transactions on Network and Service Management, 2019
- 4. "MIMETIC: Mobile Encrypted Traffic Classification using Multimodal Deep Learning", Elsevier Computer Networks, 2019 (BEST PAPER AWARD)
 - 5. "Toward Effective Mobile Encrypted Traffic Classification through Deep Learning", Elsevier Neurocomputing, 2020
 - 6. "DISTILLER: Encrypted Traffic Classification via Multimodal Multitask Deep Learning", Elsevier Journal of Network and Computer Applications, 2020 (submitted)
 - 7. "Characterization and Prediction of Mobile-App Traffic using Markov Modeling", IEEE Transactions on Network and Service Management, 2020 (submitted)
 - 8. "Know your Big Data Trade-offs when Classifying Encrypted Mobile Traffic with Deep Learning", IEEE/ ACM TMA 2019
- 9. "MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation", 4th IEEE ICCCS 2019 (BEST PAPER AWARD)

domenico.ciuonzo@unina.it

domenicociuonzo.wordpress.com

traffic.comics.unina.it

DIE UNIVERSITA'DEGLI STUDI DI TI • NAPOLI FEDERICO II

