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Introduction

• Objective
– Detect network and device failures from huge amount of unstructured log 

files in real-time.

• Our Approach
– Feature Extraction: Extract 997 features from 28GB/day unstructured log 

files.
– Feature Refinement: Use the differential data between normal and abnormal 

data as features
– Feature Reduction: Identify and use top 15 most important features without 

obvious performance degradation

• Results
– Achieve almost 100% accuracy when detecting network and device failures.
– Achieve 86% accuracy when detecting packet loss and delay.
– Total average: 92% accuracy
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Comparative Analyses

3

Our Work NOMS2020 paper

Six failure events Three failure events

One unified model Two separated models

1. Multiple-layer Perceptron (MLP)
2. Random Forest (RF)
3. Support Vector Machine (SVM)
4. Decision Tree (DT)
5. XGBoost (XGB)

1. Multiple-layer Perceptron (MLP)
2. Random Forest (RF)
3. Support Vector Machine (SVM)

Our work extends KDDI’s NOMS2020 paper as follows:



Feature Reduction

Training and Evaluation
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01
PART ONE

Feature Extraction
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Extract features from unstructured log files and merges tagged features into CSV files.
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CSV filesMerge based on time

Feature Extraction
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• For all log files, we utilize paths like “key1/key1-1/key1-1-1…” as keys to extract features 
from physical-infrastructure, virtual-infrastructure, and network-device JSON log files.

• For BGP related entries, we use the number of next-hops in each array and their prefixes as 
features.

Key Points in Feature Extraction
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PART TWO

Feature Refinement
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To highlight the difference between normal and abnormal data sets to 
derive metrics which have changed since the occurrence of a failure, we use

Differential Data as Input
Feature Refinement
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Differential data = Abnormal data – Normal data
as features.



Feature Refinement

data-for-learning

Merge

CSV

For Training

data-for-evaluation

Merge

CSV

For Evaluation

Merge diverse datasets

Learning

Evaluation

To train a unified model for diverse network events, we merge all datasets into one CSV
file for training and evaluation separately.
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03
PART THREE

Feature Reduction
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Feature Reduction

Feature Importance Analysis (with XGBoost)

Our trained XGBoost
model can automatically 
calculate importance
score of each feature.
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Importance Score of Features



Feature Reduction

● Use different numbers of features to train the data and observe the changes in accuracy.
o When the number of features is more than 57, we get the highest accuracy, which is 92%.

o If use only top 15 most important features, we can achieve an accuracy of 89%, without 
obvious performance degradation.
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Top 15 features
Avg acc: 89%
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PART FOUR

Model Training and Evaluation 
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Training and Validation

Training & Validation with Learning Data and Validation Data

Training Model 

Dataset Files
Failure

Management Virtual

Physical Network

Features

Training Validation

No. Method Accuracy
1 Random Forest 0.92
2 XGBoost 0.92
3 Decision Tree 0.88
4 SVM 0.74
5 MLP 0.73

Validation accuracy during training

14*In our training, 80% data set as training data set while the left 20% as validation data set.



– Network and device failures (Type 1, 3, 9, 11): almost 100% accuracy.
– Packet loss and delay (Type 5, 7), achieve 86% accuracy.
– Totally Average: 92% inference accuracy.

Evaluation By Precision

Label Type DT RF XGB
1: node-down 1.00 1.00 0.98
3: interface-down 0.69 1.00 0.93
5, 7: tap-loss (delay) 0.83 0.86 0.86
9: ixnetwork-bgp-injection 0.99 0.98 0.99
11: ixnetwork-bgp-hijacking 0.99 0.98 1.00

Total Average 0.88 0.92 0.92

(True Positive (TP), False Positive (FP) )
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Evaluation



• Random Forest and Decision Tree outperform others in terms of training and 
inference time

• All of them can detect the failure events in real-time.

Evaluation By Time
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Evaluation

No. Method Training time (s) Test time (s)

1 Random Forest 1.09 0.04

2 XGBoost 21.12 0.11

3 Decision Tree 0.55 0.03

4 SVM 89.63 0.69

5 MLP 2.61 0.01



05
PART FIVE

Contributions
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Contributions

• Our training model can achieve
– almost 100% accuracy when detecting network and device failures .
– 86% accuracy when detecting packet loss and delay.
– total average 92% accuracy

• Technical Details
– Feature Extraction: Extract 997 features from 28GB/Day unstructured log 

files.
– Feature Refinement: Use the differential data between normal and 

abnormal data as features
– Feature Reduction: Identify and use top 15 most important features 

without obvious performance degradation
• Source Code

– https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-032-KDDI-UT-NakaoLab-AI
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