ITU AI/ML 5G Challenge

Theme 1 from KDDI

Analysis on route information failure in IP core networks by NFV-based test environment

UT-NakaoLab-AI Team The University of Tokyo

Team Members: Fei Xia (M1), Aerman Tuerxun (M1), Jiaxing Lu (D1), Ping Du

- Objective
 - Detect network and device failures from huge amount of unstructured log files in real-time.
- Our Approach
 - Feature Extraction: Extract 997 features from 28GB/day unstructured log files.
 - Feature Refinement: Use the differential data between normal and abnormal data as features
 - Feature Reduction: Identify and use top 15 most important features without obvious performance degradation
- Results
 - Achieve almost 100% accuracy when detecting network and device failures.
 - Achieve 86% accuracy when detecting packet loss and delay.
 - Total average: 92% accuracy

Comparative Analyses

Our work extends KDDI's NOMS2020 paper as follows:

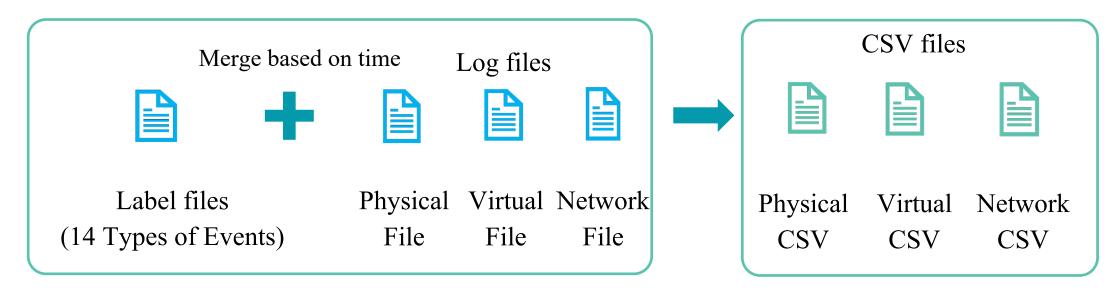
Our Work	NOMS2020 paper	
Six failure events	Three failure events	
One unified model	Two separated models	
 Multiple-layer Perceptron (MLP) Random Forest (RF) Support Vector Machine (SVM) Decision Tree (DT) XGBoost (XGB) 	 Multiple-layer Perceptron (MLP) Random Forest (RF) Support Vector Machine (SVM) 	

Feature Extraction

Feature Refinement

Feature Reduction

Training and Evaluation



Contributions

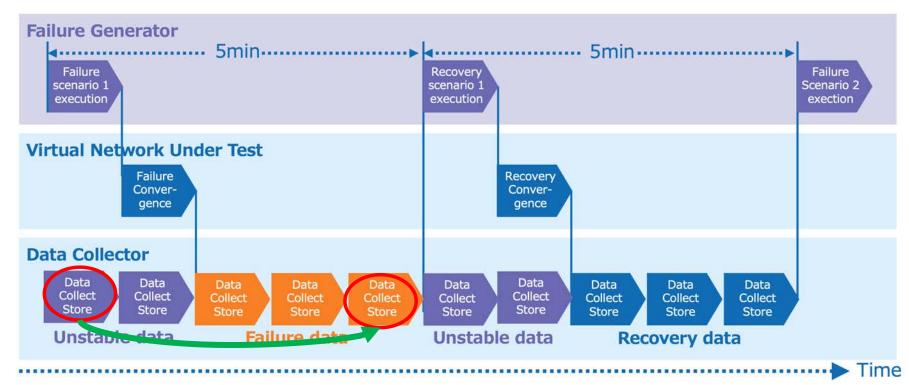
Feature Extraction **PART ONE**

Feature Extraction

Extract features from unstructured log files and merges tagged features into CSV files.

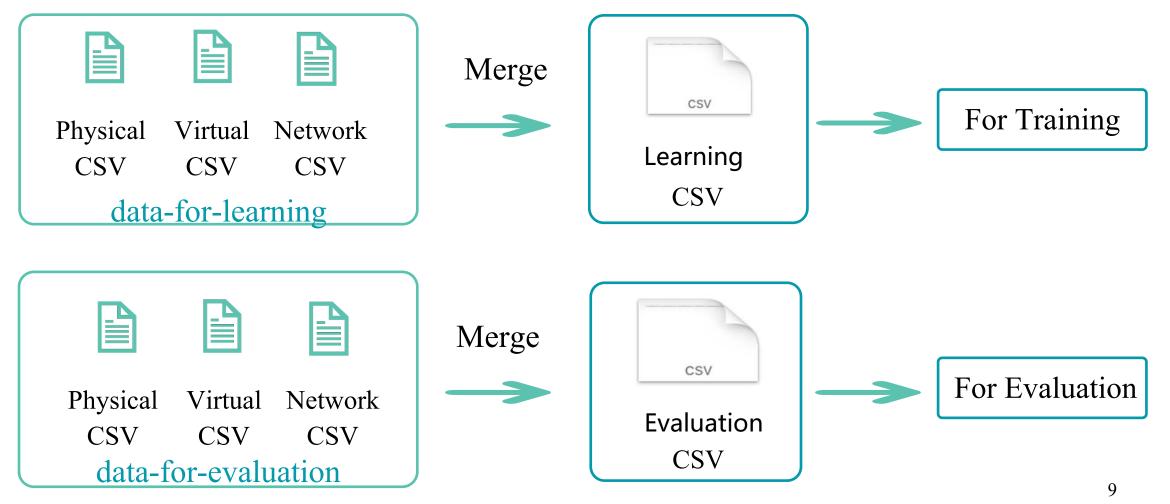
Key Points in Feature Extraction

- For all log files, we utilize **paths like** *"key1/key1-1/key1-1-1..."* **as keys** to extract features from physical-infrastructure, virtual-infrastructure, and network-device JSON log files.
- For **BGP** related entries, we use **the number of next-hops** in each array and their **prefixes** as features.


Feature Refinement PART TWO

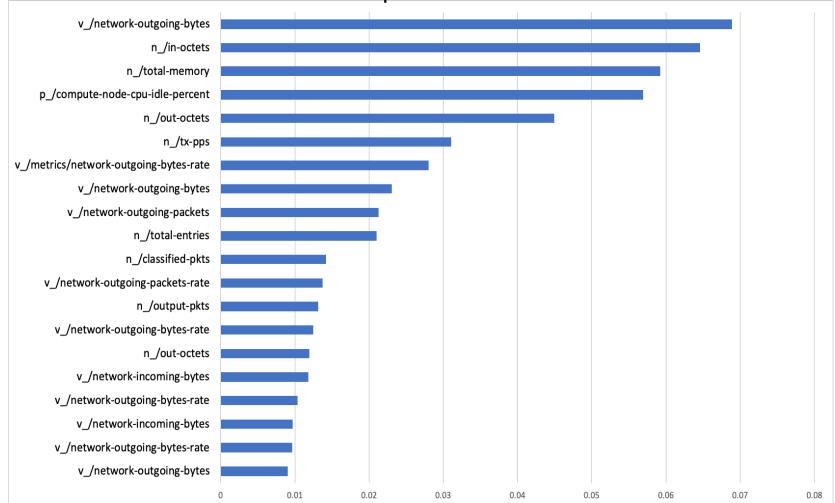
Differential Data as Input

To **highlight the difference between normal and abnormal** data sets to derive metrics which have changed since the occurrence of a failure, we use


Differential data = Abnormal data – Normal data

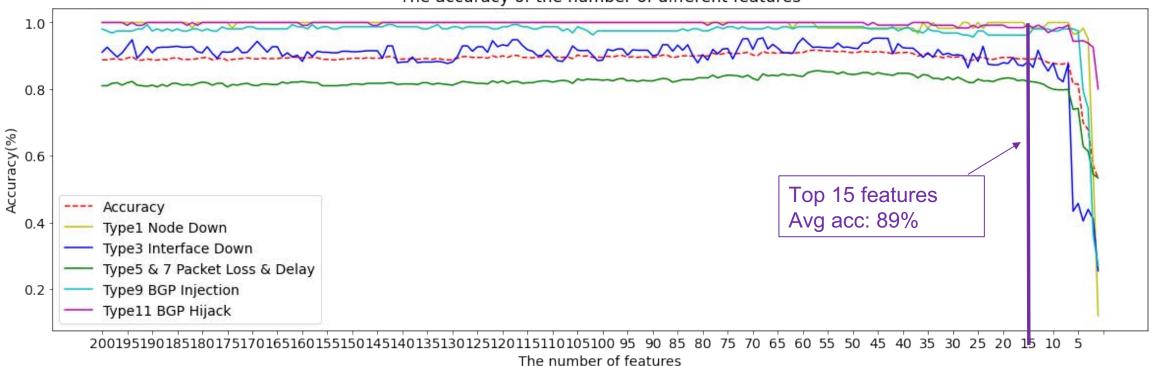
as features.

Merge diverse datasets


To train a **unified model** for diverse network events, we **merge all datasets into one CSV** file for training and evaluation separately.

Feature Reduction **PART THREE**

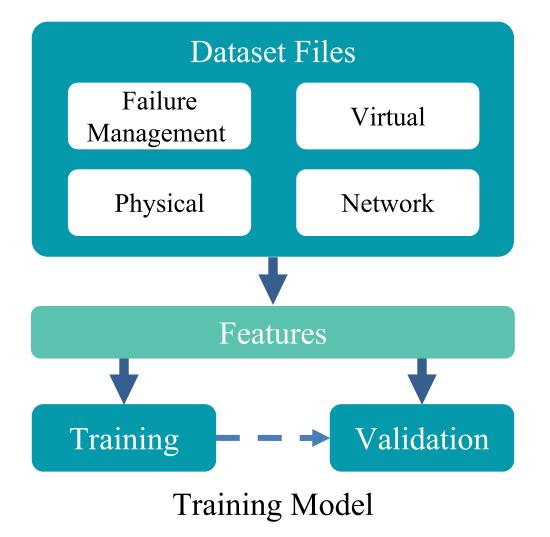
Feature Importance Analysis (with XGBoost)


Our trained XGBoost model can automatically calculate importance score of each feature.

Importance Score of Features

Feature Reduction

- Use different numbers of features to train the data and observe the changes in accuracy.
 - When the number of features is more than 57, we get the highest accuracy, which is 92%.
 - If use only **top 15 most important features**, we can achieve an accuracy of 89%, without obvious performance degradation.



The accuracy of the number of different features

Model Training and Evaluation **PART FOUR**

Training and Validation

Training & Validation with Learning Data and Validation Data

$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$				
No.	Method	Accuracy		
1	Random Forest	0.92		
2	XGBoost	0.92		
3	Decision Tree	0.88		
4	SVM	0.74		
5	MLP	0.73		

Validation accuracy during training

*In our training, 80% data set as training data set while the left 20% as validation data set.

Evaluation

Evaluation By Precision

- Network and device failures (Type 1, 3, 9, 11): almost 100% accuracy.
- Packet loss and delay (Type 5, 7), achieve 86% accuracy.
- Totally Average: 92% inference accuracy.

 $Precision = \frac{TP}{TP + FP}$ (True Positive (TP), False Positive (FP))

Label Type	DT	RF	XGB
1: node-down	1.00	1.00	0.98
3: interface-down	0.69	1.00	0.93
5, 7: tap-loss (delay)	0.83	0.86	0.86
9: ixnetwork-bgp-injection	0.99	0.98	0.99
11: ixnetwork-bgp-hijacking	0.99	0.98	1.00
Total Average	0.88	0.92	0.92

15

Evaluation

Evaluation By Time

- **Random Forest** and **Decision Tree** outperform others in terms of training and inference time
- All of them can detect the failure events in real-time.

No.	Method	Training time (s)	Test time (s)
1	Random Forest	1.09	0.04
2	XGBoost	21.12	0.11
3	Decision Tree	0.55	0.03
4	SVM	89.63	0.69
5	MLP	2.61	0.01

Contributions **PART FIVE**

Λ

Contributions

- Our training model can achieve
 - almost 100% accuracy when detecting network and device failures .
 - 86% accuracy when detecting packet loss and delay.
 - total average 92% accuracy
- Technical Details
 - Feature Extraction: Extract 997 features from 28GB/Day unstructured log files.
 - Feature Refinement: Use the differential data between normal and abnormal data as features
 - Feature Reduction: Identify and use top 15 most important features without obvious performance degradation
- Source Code
 - https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-032-KDDI-UT-NakaoLab-AI

Thanks

UT-NakaoLab-AI Team 2020-12-16