Dynamic Channel Bonding with Machine Learning

STC Team 2

M Alfaifi – A Aloshan – A Algunayah – M Abid – K Sahari

Introduction

Promised internet speed vs. Actual internet speed

Problem Background

Before 802.11n standard each router will transmit with a single channel. E.g. R1 will use CH1 and R2 will use CH2

) No interference

(•••

 $(\circ \circ)$

Router1 throughput is okay [20 Mbps]

802.11n standard enable each router to bond with more than channel

Router1 throughput Increases [60 Mbps]

Power must be distributed over the larger channel. And Which creates interference and contention since two access points near each other must share a channel

No interference

••

(***)

Router1 throughput Dramatically decreases to [5 Mbps]

Problem Background

Each router will transmit with a single channel. E.g. R1 will use CH1 and R2 will use CH2

802.11n standard enable each router to bond with more than channel

Router1 throughput Increases [60 Mbps]

Problem Background

802.11n standard enable each router to bond with more than channel

Router1 throughput Increases [60 Mbps]

Power must be distributed over the larger channel. And Which creates interference and contention since two access points near each other must share a channel

 $(\tilde{\boldsymbol{\cdot}},\tilde{\boldsymbol{\cdot}})$

Interference

Router1 throughput [5 Mbps]

Goals and objectives

Predict the throughput and enhance customer experience

Dynamic Channel Bonding in WLANs

improve the planning phase and optimize the performance by utilizing ML

ML Model

Data

The data consists of two parts: input and output for multiple deployments	Name Number of rows	data 78078	
 2 scenarios for the deployments 	Number of columns	29	
Scenario 1: 12 APs [3x4]	Column type frequency:		
Scenario 2: 8 APs [2x4]	character numeric	5 24	
 100 Deployments for each scenario 			

skim_variable	n_missing	$complete_rate$	\min	\max	empty	n_unique	whitespace
deployment	0	1	20	20	0	600	0
$node_code$	0	1	4	7	0	252	0
$node_type$	0	1	1	1	0	2	0
wlan_code	0	1	1	1	0	12	0
ap_num_12	0	1	1	1	0	2	0

Descriptive statistics

As power from AP decreases throughput decreases

As devices get relatively far apart, the throughput has an upward trend

Experiments

Search for the best model

The best performing model is **xgboost**

Validation Data

Search for the best model

The best performing model among the best models is also xgboost

Easily and reproduceable solution

GitHub

Possible solution

Main Unit

"If you look at history, innovation doesn't come just from giving people incentives; it comes from creating environments where their ideas can connect."

