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MIMO architectures @mmWave: analog vs. hybrid

MmWave MIMO:
analog architecture

Conventional MIMO:
all digital
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Split processing between
analog and digital domains to
reduce power consumption

Hybrid mmWave architecture is considered in mmWVave cellular deployments

Main challenge is fast configuration of mmWave precoders and combiners [I]

[1]1 R. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh and A. Sayeed, “An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems”, IEEE JSTSP, 201.




5G beam training with analog architectures

Initial Access Beam refinement at gNB Beam refinement at UE
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Try different combinations of transmit and receive beams, pick best

5G has a beam-based design, challenging for high mobility



How to configure the arrays in hybrid architectures?
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Beam training + Low dimensional channel estimation

Channel estimation
Reconstruct the channel and then design precoders and combiners




Overcoming large overhead in array configuration with model-based
strategies
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Exploiting channel structure
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Exploiting channel statistics
and spatial consistency [4]
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Overcoming large overhead in array configuration with ML
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ML approaches
are site-specific

ML based approaches learn the structure of the propagation

environment from data [1,2]

[1] Y. Wang, N. Jonathan Myers, N. Gonzalez-Prelcic, and Robert W. Heath Jr., “Site-specific online compressive beam codebook learning in mmWave vehicular communication,” submitted to IEEE Transactions on Wireless

Communications, May 2020, available in arXiv.
[2] A. Klautau, P. Batista, N. Gonzalez-Prelcic, Y. Wang and R. W. Heath, “5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning,” in Proc. of the Information Theory and Applications

Workshop (ITA), San Diego, CA, 2018, pp. 1-9.



Site-specific channel estimation:
model-based vs. ML approaches

Consider a hybrid Collect channels and received training
architecture at both the BS pilots to learn the environment or
and the vehicles some of its features

Test the trained network Test the adjusted model

using a given number of based approach using a given

received symbols at different number of received symbols
SNR at different SNR




Raymobtime datasets
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[6] A. Klautau, P. Batista, N. Gonzalez-Prelcic, Y. Wang and R. W. Heath, “5G MIMO Data for Machine Learning:
Application to Beam-Selection Using Deep Learning,” in Proc. of the Information Theory and Applications Workshop
(ITA), San Diego, CA, 2018, pp. 1-9.
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Datasets

Collection of 10,000 channels in HDF5 format obtained 9 collections of training pilots obtained at SNRs
from Raymobtime dataset s004 ranging from -20 to 0 dB and 1000 channels
different from the ones in the training datasets, but
corresponding to the same site

Participants must use for training 100 received pilots in the
frequency domain for each one of the provided channels Test datasets correspond to different SNR ranges
(Matlab code provided) at SNR=-15,-10,-5 dB and different number of training pilots

Pilots measured by RX
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https://www.lasse.ufpa.br/raymobtime/

Evaluation

Metric for the quality of the channel estimate is NMSE

Few training symbols (20)
/ / Lowest SNRs / Highest SNRs

PS=0.5(0.bNMSE(Test Dataset 1 SNR1)+0.3NMSE(Test Dataset 1 SNR2)+0.2NMSE(Test Dataset 1 SNR3))
+ 0.3(0.5 NMSE(Test Dataset 2 SNR1+0.3 NMSE(Test Dataset 2 SNR2)+0.2NMSE(Test Dataset 2 SNR3))

+ 0.2(0.5 NMSE(Test Dataset 3 SNR1)+0.3 NMSE(Test Dataset 3 SNR2)+0.2NMSE(Test Dataset 3 SNR3))

\

Many training symbols (80)

Obtained NMSE is weighted in a different way depending on the SNR range and

training length, giving more weight to the more challenging settings




Timeline

4

Training and testing datasets are ready -
https://research.ece.ncsu.edu/ai5gchallenge/

Registration - July 31, 2020, defined by ITU

Team enrollment: ml5g.ncsu@gmail.com

Submission (Global round) - October 2020, to be defined by ITU

Award (Global round) - October 2020, to be defined by ITU
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