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Motivation

Taking Advantage of Medical Data

Deep Neural Networks

[1] Zhu, Guangming, et al. "Applications of deep learning to neuro-imaging techniques." Frontiers in Neurology 10 (2019): 869.

[1]
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Motivation

Pervasive Connectivity enables 
Automated Diagnosis.

• Coverage
• More Patients
• Rural Area & Developing Countries

• Efficiency: 
- Faster 
- Cheaper

• Lower Burden on Healthcare System
- Decision for further examination?
- Giving Short-Term Advice
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Challenge

Medical Dataset are 
Distributed and Kept Private.

Patients’ Privacy is as 
important as Patient’s Health
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Solution

To Train a DNN on
Distributed Datasets
using 
Federated Learning[2]

Public
Health
Service

Trained Model 

𝓜

[2] Truex, Stacey, et al. "A hybrid approach to privacy-preserving federated learning." Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. 2019.
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Solution(cont.)



Second) 𝓜 must not 
see 𝐗, and new patients 
must not see 𝓜.
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Differential Privacy

Private Inference

Requirements Privacy?
First) 𝓜 must not reveal the presence (or absence)  
of any patient 𝒊 in the training set.
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"Deep learning with differential privacy”[3]

Known as DPSGD

[3] Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016.
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Implementation(cont.)



Better Accuracy while keeping the same DP Privacy Guarantee.
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Why Secure Aggregation?

Adding Gaussian Noise for DP

𝑲
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Dopamine’s Training Algorithm



Evaluation
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• Dataset:
– Diabetic Retinopathy[4]
– Five Classes: normal, mild, moderate, severe, 

and proliferative.
– 3662 images: 2931 for training, 731 for testing.
– Dimensions: 224×224

[4] Choi, J. Y.; et. al. . 2017. Multi-categorical deep learning neural network to classify 
retinal images: A pilot study employing small database. PLOS ONE12: 1–16.

• Deep Neural Network:
– SqueezeNet[5]
– 50x fewer parameters than the  

famous AlexNet. 
– Yet, achieves the same level of 

AlexNet’s accuracy on ImageNet.

[5] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer 
parameters and< 0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016).

• Simulation:
– 10 hospitals and 1 server.
– data distributed i.i.d and equal.
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Baselines:
1) Centralized Learning without Privacy
2) Federated Learning without Privacy
3) Centralized Learning with Differential Privacy
4) Federated Learning with Parallel Differential Privacy
5) Our Solution Lower Better

Higher Better
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(1) & (3)
are not achievable in practice!

(2)
is not an acceptable alternative!



Private Inference
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https://imperial-diagnostics.herokuapp.com

Trained Model 

𝓜

𝐗

𝒚
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Patients don’t share their 𝐗,
but

𝓜 is sent to the patients’ devices.

https://imperial-diagnostics.herokuapp.com/


Contributions
1. First to implement Federated Learning  on DNNs 

with Patient-Level DP on a Medical Dataset
2. First to use  Momentums in Federated DP-SGD 

achieving Better Accuracy & Stable Training

1. More accurate and efficient FL algorithms with DP.
2. When patients could have more than one sample data.
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In Progress
1. End-to-end Secure Aggregation Using Homomorphic encryption
2. Further Evaluation:  Other datasets --- Other DNNs. 
3. Keeping the trained Model Private at the Server’s Side.

Open Questions

https://github.com/ipc-lab/private-ml-for-health

Q/A

https://github.com/ipc-lab/private-ml-for-health

