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Motivation

: Taking Advantage of Medical Data
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[1] Zhu, Guangming, et al. "Applications of deep learning to neuro-imaging techniques." Frontiers in Neurology 10 (2019): 869. 3
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Medical Dataset are
Distributed and Kept Private.

Patients’ Privacy is as
important as Patient’s Health




Solution
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[2] Truex, Stacey, et al. "A hybrid approach to privacy-preserving federated learning." Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. 2019. 6



Solution(cont)
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Requirements Privacy?

First) M must not reveal the presence (or absence)
Differential Privacy® of any patient i in the training set.
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[3] Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016. 9



Implementation
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Implementationcont,)
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Why Secure Aggregation?

Better Accuracy while keeping the same DP Privacy Guarantee.

Adding Gaussian Noise for DP
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Dopamine’s Training Algorithm

Algorithm 1 Dopamine’s Training

1:

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

Input: K: number of hospitals, D: distributed dataset, w: model’s trainable parameters, £(-, -): loss function, ¢: sampling
probability, o: noise scale, C: gradient norm bound, 7: learning rate, 3: momentum, 7": number of rounds, (¢, §): bounds
on the patient-level differential privacy loss.
Output: w: final parameters.
w{ = random initialization.
eE=0
fort:1,...,7Tdo
fork:1,...,K do

wi =wh!

D = Sampling(Dy) // by uniformly sampling each item in Dy, independently with probability g.

for x; € D} do

g'(xi) = g (x;)/ max (1, 1El)
e~nd for o
g = o (Z:8'(x) + N (0, =)

g =g + gt /ig) =0
Wi = Wi — N8k
end for
€ = CalculatePrivacyLoss(6, q,o0,t) // by Moments Accountant (Abadi et al. 2016)
if € > e then
return wi; !
end if
wh = & (SecureAggregation(y, wi))
end for
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Evaluation
 Deep Neural Network:

- Dataset: -~ SqueezeNet®
. . . — 50x fewer parameters than the
- D R hy
labetic Retinopathy famous AlexNet.

— Five Classes: normal, mild, moderate, severe,
and proliferative.

— 3662 images: 2931 for training, 731 for testing.
— Dimensions: 224x224

— Yet, achieves the same level of
AlexNet’s accuracy on ImageNet.

- Simulation:
— 10 hospitals and 1 server.
— data distributed i.i.d and equal.

i
[4] Choi, J. Y.; et. al. . 2017. Multi-categorical deep learning neural network to classify [5] landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer 14

retinal images: A pilot study employing small database. PLOS ONE12: 1-16. parameters and< 0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016).
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Private Inference
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Patients don’t share their X,
but

M is sent to the patients’ devices.

localhost W (4]
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Private Diabetic Retinopathy Diagnosis App Demo

Upload your scan here!

' Choose File | no file selected

A global agent contains the model used for diagnosis. When
you upload your scan, the agent sends its model to your app
and inference is performed on your device.

This method keeps your data on your own device, and hence
private.

https://imperial-diagnostics.herokuapp.com
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https://imperial-diagnostics.herokuapp.com/

C o ntri b u ti 0 n S https://qgithub.com/ipc-lab/private-ml-for-health

[=]ztez (=1
1. First to implement Federated Learning on DNNs E."_.f';.
with Patient-Level DP on a Medical Dataset IETL"'E' R

2. First to use Momentums in Federated DP-SGD
achieving Better Accuracy & Stable Training

In Progress
1. End-to-end Secure Aggregation Using Homomaorphic encryption QIA

2. Further Evaluation: Other datasets --- Other DNNSs.
3. Keeping the trained Model Private at the Server’s Side.

Open Questions

1. More accurate and efficient FL algorithms with DP.
2. When patients could have more than one sample data.
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https://github.com/ipc-lab/private-ml-for-health

