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Pre-training and fine-tuning approach 
for detecting route information 

failures in IP core networks



Conventional rule-based approach is NOT applicable because
BGP does not have a mechanism to authenticate each router configuration

Background ―  Difficulty of failure detection in BGP network
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Problem Description ―  Failure Detection in BGP Network
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● Objective: Detect the failures in the BGP network from the network status information 
● Input: Time series data obtained from the border gateway routers



Related Work - Fault classification using machine learning in an NFV environment 
[Kawasaki+20]

In the case of failure detection in the BGP network,
● Overfitting to one domain caused by lack of context should occur
● Additional dataset is required to apply the model to other networks 

Failure Scenario: 
Node-down, Interface-down, and CPU overload

Preprocessor: 
Bag-of-Words (Bow) using labeled training data

Fault Classifier: MLP, RF, and SVM Pre-processing Steps

Problem

● Failure Scenario does NOT include failures peculiar to BGP network (injection, hijack, etc…)

● Only labeled data (normal/abnormal) are used as the training data



Methodology
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         General Path
         Embedding model

Pre-training and fine-tuning approach

The size of labeled 
data is small.

BGP Path Logs

A

Pre-training phase
We pre-train a general BGP path 
embedding model to understand BGP 
context.

Unsupervised learning

Fine-tuning phase
We train a model to predict labels on 
specific task such as  BGP network 
failure detection.          Supervised model 

         specific label data

A

Supervised learning

Since the model learning to understand the context does not require specific label data 
in pre-training, a large amount of BGP path data generated by real network is available.

Advantage



BGP path embedding

ある時刻のnetwork-deviceのjson

IntGW-01 IntGW
-02
...

TR-01
...

TR-02
...

RR-02
...

bgp-path-entry

"prefix": "1.187.50.0/23",
"nexthop":"10.30.2.2",
"as-path": "10 4608 7575 
2914 9498 55644 55644 
55644 55644 55644 55644 
45271"

・
・
・

1.0.0.0/2410 4608 13335 10 4608 13335 p10 p30 p2 p2
1.0.4.0/2410 4608 4826 38803 56203 10 4608 4826 38803 56203 p10 p30 p2 p2
1.0.4.0/2210 4608 4826 38803 56203 10 4608 4826 38803 56203 p10 p30 p2 p2
1.0.5.0/2410 4608 4826 38803 56203 10 4608 4826 38803 56203 p10 p30 p2 p2

IntGW-01のpath-entries document

...
IntGW-02のpath-entries document

...
TR-01のpath-entries document

...
TR-02のpath-entries document

...
RR-01のpath-entries document

・・・

BGP path has
an ordered 
structure.

We address the ordered 
structure as a language model.

We developed a general path 
model which transforms objects 

on BGP to vectors.

Unsupervised learning



Dimensionality Reduction

To cope with the Curse of Dimensionality

Because there are too many columns in the dataframe 
we need to delete redundant columns.
ex. 238 columns ( physical infrastructure )

Method

1. Delete repetitive columns in each row 
2. Delete the column with correlation coef. == 1

- Generated correlation coef. matrix (Left)
- Pearson product-moment correlation 

coefficient

Example Image of Correlation Matrix
https://blog.amedama.jp/entry/2017/04/18/230431

Delete the column 
with correlation coef. == 1

https://jp.mathworks.com/help/stats/corr.html#mw_1b19e0d5-7906-4577-a0a5-b20311da7faf



Evaluation
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Failure Prediction Baseline : 
- Failure detection by tree-based classifiers

AdaBoost, Bagging, ExtraTrees, GradientBoosting, 
Random Forest

- Regression analysis for the failure indicating 
column of each failure types

- Less failure examples problem
 : oversampling by SMOTE

- One Class SVM：Unsupervised Learning
- Learn normal state to detect anomaly status 

as outlier
- Useful for unknown datasets
- Support Vector Machine : Supervised Learning

For the Evaluation

Support Vector Machine and One Class SVM
https://www.smartbowwow.com/2018/12/anomaly-detection-using-on

e-class.html

Example Image of Random Forest
http://kazoo04.hatenablog.com/entry/2013/12/04/175402



Evaluation ―  Tap Loss & Tap Delay

Tap Loss

Tap Delay
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Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 62.90 63.25 63.27 63.25 63.25 18.61

Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 53.26 54.83 54.84 54.86 54.84 17.38



Evaluation ―  Node Down & Interface Down

Node Down

Interface Down
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Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 76.31 71.60 73.62 70.09 73.07 22.93

Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 60.92 65.11 65.11 65.12 65.11 10.22



Evaluation ―  BGP injection & BGP hijack

BGP injection

BGP hijack
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Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 74.34 64.22 61.81 63.63 63.70 1.16

Method AdaBoost Bagging ExtraTrees Gradient 
Boosting

Random 
Forest

OneClass 
SVM

f1 score(%) 64.04 54.96 54.56 56.47 56.31 2.07



Summary
03



Summary

Anomaly type Anomaly name f1 score

Hardware Tap Loss 63.27

Hardware Tap Delay 54.86

Software Node Down 76.31

Software Interface 65.11

Software BGP Injection 74.34

Software BGP Hijack 64.04

Pre-training： BGP path embedding
(unsupervised training)

BGP path data from routers

Evaluation with labeled data

Fine-tuning: existing methods with labeled data
(supervised learning)

15



Thanks

● member
○ Ryoma Kondo kondo@mlab.t.u-tokyo.ac.jp
○ Takashi Ubukata t_ubukata@mlab.t.u-tokyo.ac.jp
○ Kentaro Matsuura matsuura@mlab.t.u-tokyo.ac.jp

mailto:kondo@mlab.t.u-tokyo.ac.jp
mailto:t_ubukata@mlab.t.u-tokyo.ac.jp
mailto:matsuura@mlab.t.u-tokyo.ac.jp

