

team mlab 2020/12/15

Background — Difficulty of failure detection in BGP network

Difficulty

Conventional rule-based approach is NOT applicable because BGP does not have a mechanism to authenticate each router configuration

Problem Description — Failure Detection in BGP Network

- Objective: Detect the failures in the BGP network from the network status information
- Input: Time series data obtained from the border gateway routers

Related Work - Fault classification using machine learning in an NFV environment [Kawasaki+20]

Failure Scenario:

Node-down, Interface-down, and CPU overload

Preprocessor:

Bag-of-Words (Bow) using labeled training data

Fault Classifier: MLP, RF, and SVM

Pre-processing Steps

- Failure Scenario does NOT include failures peculiar to BGP network (injection, hijack, etc...)
- Only labeled data (normal/abnormal) are used as the training data

Problem

In the case of failure detection in the BGP network,

- Overfitting to one domain caused by lack of context should occur
- Additional dataset is required to apply the model to other networks

Methodology

Pre-training and fine-tuning approach

Unsupervised learning

The size of labeled

data is small.

Pre-training phase

We pre-train a general BGP path embedding model to understand BGP context.

Fine-tuning phase

We train a model to predict labels on specific task such as BGP network failure detection.

Advantage

Since the model learning to understand the context does not require specific label data in pre-training, a large amount of BGP path data generated by real network is available.

BGP path embedding

BGP path has an ordered structure.

We address the ordered structure as a language model.

Unsupervised learning

We developed a general path model which transforms objects on BGP to vectors.

Dimensionality Reduction

Example Image of Correlation Matrix

https://blog.amedama.jp/entry/2017/04/18/230431

Delete the column with correlation coef. == 1

To cope with the Curse of Dimensionality

Because there are too many columns in the dataframe we need to delete redundant columns.

ex. 238 columns (physical infrastructure)

Method

- 1. Delete repetitive columns in each row
- Delete the column with correlation coef. == 1
 - Generated correlation coef. matrix (Left)
 - Pearson product-moment correlation coefficient

$$\label{eq:ho} \begin{split} \mathit{rho}(a,b) = \frac{\displaystyle\sum_{i=1}^{n} (X_{a,i} - \overline{X}_a)(Y_{b,i} - \overline{Y}_b)}{\left\{\displaystyle\sum_{i=1}^{n} (X_{a,i} - \overline{X}_a)^2 \sum_{j=1}^{n} (Y_{b,j} - \overline{Y}_b)^2\right\}^{1/2}}. \end{split}$$

For the Evaluation

Failure Prediction Baseline:

- Failure detection by tree-based classifiers
 - AdaBoost, Bagging, ExtraTrees, GradientBoosting, Random Forest
 - Regression analysis for the failure indicating column of each failure types
 - Less failure examples problem: oversampling by SMOTE
- One Class SVM: Unsupervised Learning
 - Learn normal state to detect anomaly status as outlier
 - Useful for unknown datasets
 - Support Vector Machine : Supervised Learning

Support Vector Machine and One Class SVM

https://www.smartbowwow.com/2018/12/anomaly-detection-using-on e-class.html

Evaluation — Tap Loss & Tap Delay

Tap Loss

Method	AdaBoost	Bagging	ExtraTrees	Gradient Boosting	Random Forest	OneClass SVM
f1 score(%)	62.90	63.25	63.27	63.25	63.25	18.61

Tap Delay

Method	AdaBoost	Bagging	ExtraTrees	Gradient Boosting	Random Forest	OneClass SVM
f1 score(%)	53.26	54.83	54.84	54.86	54.84	17.38

Evaluation - Node Down & Interface Down

Node Down

Method	AdaBoost	Bagging	ExtraTrees	Gradient Boosting	Random Forest	OneClass SVM
f1 score(%)	76.31	71.60	73.62	70.09	73.07	22.93

Interface Down

Method	AdaBoost	Bagging	ExtraTrees	Gradient Boosting	Random Forest	OneClass SVM
f1 score(%)	60.92	65.11	65.11	65.12	65.11	10.22

Evaluation — BGP injection & BGP hijack

BGP injection

Method	AdaBoost	Bagging	ExtraTrees	Gradient Boosting	Random Forest	OneClass SVM
f1 score(%)	74.34	64.22	61.81	63.63	63.70	1.16

BGP hijack

Summary

BGP path data from routers

Pre-training: BGP path embedding (unsupervised training)

Fine-tuning: existing methods with labeled data (supervised learning)

Thanks

- member
 - Ryoma Kondo
- kondo@mlab.t.u-tokyo.ac.jp
- Takashi Ubukata
- t_ubukata@mlab.t.u-tokyo.ac.jp
- Kentaro Matsuura
- matsuura@mlab.t.u-tokyo.ac.jp

