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Why use satellites for poverty prediction?

1. Ground data are very infrequent
2. Humans can distinguish well-being in imagery

3. Computers are getting really good at image
recognition tasks

4. There is a lot of new imagery to play with



New sources of satellite data

Sensor Wavelengths Spatial Revisit Launch
Resolution frequency vyear
Sentinel-1  C-band radar 20m 6 day 2014,
2016
Sentinel-2 Optical 10m 5 day 2015,
2017
Skysat Optical Im ~weekly 2013-
present
Planet Optical 3-5m ~daily 2014-

present




Some results: poverty in Africa

Outcome: village-level consumption (LSMS) Input: ¥~3m RGB Model: CNN/ transfer learning
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Outcome: village-level consumption (LSMS)
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Input: ¥~3m RGB Model: CNN/ transfer learning

Nigeria, estimated daily per capita expenditure (2012-2015)
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Average daily per capita consumption expenditure ($)

Data from: N. Jean, M. Burke, M. Xie, W.M. Davis, D. Lobell, 5. Ermon.,
“Combining satellite imagery and machine learning to predict poverty”. Science, 2016
For more info, visit sustain.stanford.edu



Some results: poverty in India (rural)

Outcome: village-level consumption  Input: 10m radar + 30m multispectral Model: CNN



Some results: poverty in India (rural)

Outcome: village-level consumption  Input: 10m radar + 30m multispectral Model: CNN
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Some results: smallholder agriculture

Outcome: plot level maize yields Input: 10m Sentinel Model: regression/SCYM



Some results: smallholder agriculture

Outcome: plot level maize yields
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Some results: access to electricity

Outcome: Village-level electricity (Afrobar.) Input: 30m Landsat Model: CNN



Some results: access to electricity

Outcome: Village-level electricity (Afrobar.) Input: 30m Landsat Model: CNN

S U 7 t label balance [ nightlights OSM oracle ‘ Landsat 8

| : Electricity 0.66 0.79 073  0.89 0.85

Pipedwater 0.60 0.73 0.73 0.89 0.86

Sewerage 0.35 0.75 0.77 0.89 0.74

Road 0.53 0.67 0.68  0.79 0.76

Lo Postoffice 0.24 0.56 0.64  0.92 0.70

e s, 4 Marketstalls  0.65 0.50 0.62  0.84 0.65

B Policestation 0.33 0.54 0.63 0.90 0.62

Bank 0.24 0.57 0.70  0.93 0.68

Oshri et al 2018



Economic weII-being from space

'We are gettlng better at measurlng development
outcomes with satellites.

The next few years will see huge advances, and
we are working on scaling these estimates.

We want to work with policymakers and practitioners to
operationalize satellite-based estimates.



Thank you!

Marshall Burke
mburke@stanford.edu
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Are these useful measurements?

R, <1 But this could be because of error in either
ground or satellite data (or both).

Attempt at diagnosing source of error:
— We have two measurements of the same outcome

— See how well they relate to known inputs
 Agriculture: fertilizer/ hybrid seed
* Poverty. roads, climate, independent wealth estimates
— “Better” outcome measurement is that which
correlates more strongly with input



Results: agriculture

Relationship between inputs (fertilizer, hybrid seed) and outputs the same
for the two outcome measures
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Results: poverty

log consumpiian
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Suggests that, at minimum,
there is no more error in
satellite-based measures
than ground measures



