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Passive sensor operations

• All matter emits, absorbs and scatters electromagnetic 

energy.

• Passive sensors are radiometers which are low noise 

receivers patterned after radio astronomy instruments.

• Power measured by passive sensors is function of 

surface composition, physical temperature, surface 

roughness, and other physical characteristics.



www.nasa.gov29-30 October 

2008

USTTI - Remote Sensing - Sliver 

Spring, MD USA - J.R. Piepmeier

5

(1) (2)

(3)

(4)
(5)

(6)

(7)

(1) atmosphere (2) rain (3) clouds

(4) Land (5) oceans (6) scattering

(7) 2.7 K cosmic background

Natural sources of microwave radiation



www.nasa.gov

Types of passive microwave sensors

• Imaging sensors
– Many environmental data products are produced using 

multivariable algorithms to retrieve a set of geophysical 
parameters simultaneously from calibrated multi-channel 
microwave radiometric imagery

• Atmospheric sounding sensors
– Atmospheric sounding is a measurement of vertical distribution 

of physical properties of a column of the atmosphere such as 
pressure, temperature, wind speed, wind direction, liquid water 
content, ozone concentration, pollution, and other properties

• Microwave limb sounding sensors
– Limb sounders observe the atmosphere in directions tangential 

to the atmospheric layers and are used to study low to upper 
atmosphere regions where the intense photochemistry 
activities may have a heavy impact on the Earth’s climate
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Passive sensor data products (Part 1)

• Measured radiation 

– Occurs naturally

– Very low power levels

– Contains essential information on the physical processes

• Radiation peaks indicate presence of specific 

chemicals

• Absence of radiation from certain frequencies 

indicates the absorption by atmospheric gases

• Strength or absence of signals at particular 

frequencies is used to determine whether specific 

gases are present and, if so, in what quantity and at 

what locations
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Atmospheric attenuation below 275 GHz
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Temperature at 300 mb
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Water Vapor at 850 mb
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Passive sensor data products (Part 2)

• Environmental information is obtained through 

passive sensor measurements

– Frequency bands determined by fixed physical properties 

(molecular resonance) 

– Frequencies do not change 

– Information cannot be duplicated in other frequency bands

• Signal strength at a given frequency may depend on 

several variables

– Use of several frequencies necessary to match the multiple 

unknowns

– Use of multiple frequencies is primary technique used to 

measure various characteristics of the atmosphere and 

surface of the Earth
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Multiple frequencies used over oceans
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Multiple frequencies used over oceans

• Measurements at 1.4 GHz are useful for ocean salinity

• Measurements around 5 GHz offer the best sensitivity 
to sea surface temperature

• The 17-19 GHz region, where the signature of sea 
surface temperature and atmospheric water vapor is 
the smallest, is optimum for ocean surface emissivity

• Total content of water vapor is best measured around 
24 GHz, while liquid cloud data are obtained via 
measurements around 36 GHz

• Five frequencies (around 6 GHz, 10 GHz, 18 GHz, 24 
GHz and 36 GHz) are necessary for determining the 
dominant parameters
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Sea Surface Salinity
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Sea Surface Temperature
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Land Area Remote Sensing
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Multiple frequencies used over land

• A frequency around 1.4 GHz is needed to measure 

soil moisture content

• Measurements in the 5 GHz to 10 GHz range are 

needed to estimate vegetation biomass once the soil 

moisture contribution is known

• Two frequencies are needed around water vapor 

absorption peak (typically 18-19 GHz and 23-24 GHz) 

to assess atmospheric contribution

• A frequency around 37 GHz has utility for land surface 

temperature
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Soil Moisture
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Land surface temperature from 37 GHz

Journal of Geophysical Research: Atmospheres

Volume 114, Issue D4, D04113, 25 FEB 2009 DOI: 10.1029/2008JD010257

http://onlinelibrary.wiley.com/doi/10.1029/2008JD010257/full#jgrd14899-fig-0008

http://onlinelibrary.wiley.com/doi/10.1002/jgrd.v114.D4/issuetoc
http://onlinelibrary.wiley.com/doi/10.1029/2008JD010257/full
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EESS (passive) use above 275 GHz
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Limb Sounding

Microwave Limb Sounder (MLS) on Aura

118 GHz

640 GHz

190 GHz

640 GHz

190 GHz
240 GHz
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DEVELOPMENTS OVER LAST 

DECADE+

Modern Spaceborne Microwave Radiometry
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Trends

• Imagers and sounders improved capability

• Rise of L-band

• Submillimeterwave in nadir sensors

• Cubesats, cubesats, cubesats
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Passive Microwave Impact on 

Numerical Weather Prediction

Mohamed Dahoui, Lars Isaksen and Gabor Radnoti, “Assessing the impact of observations using observation-minus-forecast 

residuals,” ECMWF Newsletter, Number 152 – Summer 2017, Published in August 2017. 

https://www.ecmwf.int/en/newsletter/152/meteorology/assessing-impact-observations-using-observation-minus-forecast

https://www.ecmwf.int/en/newsletter/152/meteorology/assessing-impact-observations-using-observation-minus-forecast
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Global Precipitation Measurement

https://pmm.nasa.gov/
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30-minute Precipitation Product
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Modern L-band Radiometers

ESA’s SMOS

NASA/CONAE

Aquarius/SAC-D
NASA SMAP
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Ice Clouds
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Ice Cloud Imager

MetOp-Second Generation Program

Channel	No
Frequency	

(GHz)

Bandwidth	

(GHz)
Polarization Utilization NEΔT	(K)

ICI-2 183.31±3.4 3 V 0.7

ICI-3 183.31±2.0 3 V 0.7

ICI-4 243.2±2.5 6 V,	H
Quasi-window,	cloud	ice	

retrieval,	cirrus	clouds
0.6

ICI-6 325.15±3.5 4.8 V 1.2

ICI-7 325.15±1.5 3.2 V 1.4

ICI-9 448±3.0 4 V 1.5

ICI-10 448±1.4 2.4 V 1.9

ICI-11 664±4.2 10 V,	H
Quasi-window,	cirrus	clouds,	

cloud	ice	water	path
1.5

Cloud	ice	effective	radius

Cloud	ice	water	path	and	cirrus

Water	vapor	profile	and	

snowfall

0.6V6183.31±8.4ICI-1

1.3V6448±7.2ICI-8

1.1V6325.15±9.5ICI-5

https://directory.eoportal.org/web/eoportal/satellite-missions/m/metop-sg
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883-GHz IceCube 3U CubeSat

• Deployed May 2017

• Successful Technology Demo

https://atmospheres.gsfc.nasa.gov/climate/index.php?section=259
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TEMPEST-D 6U CubeSat

• Cross-track millimeter wave

• Measure precipitation

• Univ. Colorado/JPL

https://directory.eoportal.org/web/eoportal/satellite-missions/t/tempest-d
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NASA TROPICS 

3U CubeSat Constellation

MIT Lincoln Laboratories

https://tropics.ll.mit.edu/CMS/tropics/
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CubeRRT CubeSat

Cubesat validation of Radiometer RFI Technology

6-40 GHz frequency-hopping radiometer with 

interference detection
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CHALLENGES FOR NEXT 

DECADE+

“Quiet Please”
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Susceptibility to Interference

• Interference

• Shared spectrum sensing
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L-Band Allocation
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RFI Detected by SMAP

Percent of the time that SMAP detects an RFI level of 5 K or more in 

horizontal polarization for data from April 2015 to March 2016.
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X-band Allocation



www.nasa.gov

10.7-GHz Coastal Ocean Reflections from DBS

Fig. 7: Monthly average RFI intensity maps for AMSR-E …10.7 GHz …

horizontal polarization ... for all descending portions of AMSR-E orbits from 

February 1 to 18, 2011.

X. Tian, et al., “Detection of AMSR-E Radio Frequency Interference over Ocean”
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X-band RFI observed by GMI

• GMI restricts observation to within EESS(passive) allocations

• But most of X-band EESS is shared with fixed and mobile

INR ~< -10 dB

Draper, D. Report on GMI Special Study #15: Radio Frequency Interference.
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Ku/Ka band Allocation
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18.7 GHz Ground Reflections from DBS

• McKague, et al., “Characterization of K-band Radio Frequency 

Interference from AMSR-E, Windsat AND SSM/I,” Univ. Mich.

Figure 4. 23.8H – 18.7H Tb differences for AMSR-E, January 2009.



www.nasa.gov

18.7-GHz DBS Coastal Ocean 

Reflections

Fig. 7: Monthly average RFI intensity maps for AMSR-E …18.7 GHz … vertical 

polarization ... for all descending portions of AMSR-E orbits from February 1 to 

18, 2011.

X. Tian, et al., “Detection of AMSR-E Radio Frequency Interference over Ocean”
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`Conclusions

• Passive microwave sensors provide valuable 

information for Meteorology

• Passive use of the spectrum is expanding

– Lower (e.g., L-band) and higher (e.g., submmw) frequencies

– More sensors (constellations)

– Increased capability

• Interference exists in passive exclusive allocations

• Interference exists in passive shared allocations

• Interference causes information loss

• Perhaps the biggest threat to passive sensing 

operations is interference that is undetected, corrupting 

data that is then mistaken for valid data leading to 

flawed conclusions


