

- 5G PPP in Horizon 2020 of the European Union
- 5G roadmap and 5G PPP time plan
- 5G PPP research project portfolio
- IMT-Vision recommendation and time plan
- ITU-R evaluation approach
- Conclusions

5G PPP in Horizon 2020 of the EU

 5G PPP is a research program in Horizon 2020 of the EU dedicated to 5G system research

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-internet https://5g-ppp.eu/

- Budget for 2014 2020 time frame
 - Up to 700 million € public funding
 - Matched by private side including leveraging factor 5 of additional private investment results in private value of about 3.5 billion €
- Research program is addressing all building blocks of a future communication network and a huge number of vertical <u>use cases</u>
- 5G Infrastructure Association vision paper http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
- 5G Infrastructure Association paper on vertical sectors
 https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf
- 5G Infrastructure Association paper on innovations https://5g-ppp.eu/wp-content/uploads/2017/01/5GPPP-brochure-MWC17.pdf
- Phase 1 projects started on July 1, 2015
- Phase 2 projects started on June 1, 2017

5/10/2017
Source: 5G Infrastructure Association.

global next generation path

Key challenges

- PPP Program that will deliver solutions, architectures, technologies and standards for the ubiquitous 5G communication infrastructures of the next decade
- Program Ambitions: Key Challenges / High level KPIs
 - Providing 1000 times higher wireless area capacity and more varied service capabilities compared to 2010
 - Saving up to 90% of energy per service provided. The main focus will be in mobile communication networks where the dominating energy consumption comes from the radio access network
 - Reducing the average service creation time cycle from 90 hours to 90 minutes
 - Creating a secure, reliable and dependable Internet with a "zero perceived" downtime for services provision
 - Facilitating very dense deployments of wireless communication links to connect over 7 trillion wireless devices serving over 7 billion people
 - Enabling advanced User controlled privacy

4

1

Policy-oriented Working Groups under the umbrella of 5G Infrastructure Association

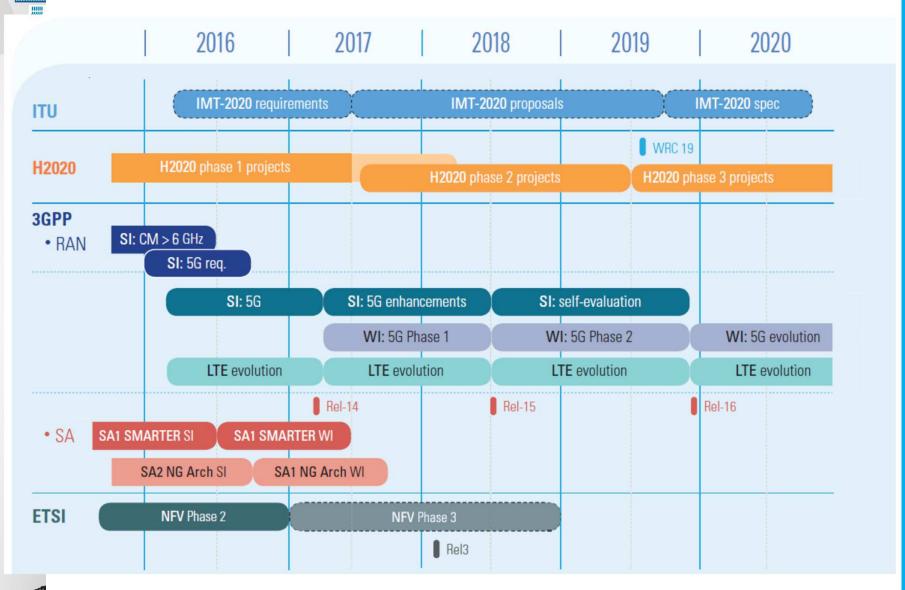
The European path towards global next generation communication network

Pre-standards

Activity 5G PPP Contractual Arrangement, KPIs

Trials

Activity Community building and Public Relations


SME support

towards global next generation communication network The European path

5G PPP Vision and Requirements 5G roadmap

Horizon 2020 5G PPP

Call 1 selected projects – 07.2015 – 06.2017 (06.2018)

PP

CogNet

Building an Intelligent System of Insights and Action for 5G Network Management

Security (Will be added later)

Selfnet **SELFNET**

Framework for SELF-organized network management in virtualized and software defined NETworks

CHARISMA

CHARISMA

Converged Heterogeneous Advanced 5G Cloud-RAN Architecture for Intelligent and Secure Media Access

Radio-related cluster

Fronthaul/Backhaul

Hardware implementation

Network automation

SDN, NFV, Cloud and Virtualisation

Security

SUPERFLUIDITY

Superfluidity: a edge system

5Gex

5GEx 5G Exchange

VirtuWind

Virtual and programmable industrial network prototype deployed in operational Wind park

sonata 🖄 SONATA

Service Programming and Orchestration for Virtualized **Software Networks**

super-fluid, cloudnative, converged

METIS-II

Mobile and wireless communications

Enablers for Twenty-twenty (2020)

Information Society-II

Coherent

COHERENT

Coordinated control and spectrum management for 5G heterogeneous radio access networks

Speed55 SPEED-5G

quality of Service Provision and capacity Expansion through Extended-DSA for 5G

5G-Norma

5G NOvel Radio Multiservice adaptive network Architecture

SESAME SESAME

Small cEllS coordinAtion for Multi-tenancy and Edge services

FANTASTIC-5G

Flexible Air iNTerfAce for Scalable service delivery wiThin wireless Communication networks of the 5th Generation

Flex5Gware

Flexible and efficient hardware/softwar e platforms for 5G network elements and devices

5G-Xhaul

Dynamically Reconfigurable Optical-Wireless Backhaul/Fronthaul with Cognitive Control Plane for Small Cells and Cloud-RANs

5G-Crosshaul

The 5G Integrated fronthaul/backhaul

mm MAGIC

mmMAGIC

Millimetre-Wave Based Mobile Radio Access Networ for Fifth Generation Integrated Communications

55,

Euro-5G

5G PPP Coordination and Support Action

05/10/2017

Source: 5G PPP, https://5g-ppp.eu/5g-ppp-phase-1-projects/.

Horizon 2020 5G PPP

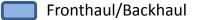
Call 2 selected projects - 06.2017 - 11.2019 (08.2020)

Distributed multi-tenant cloud and radio platform for municipalities and infrastructure owners acting as 5G neutral hosts

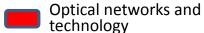
SCAST 5G Xcast

Programmable edge-to-cloud virtualization fabric for the 5G Media industry

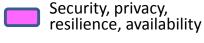
5Gtango № 5G TANGO


5G Development and


Validation Platform for global


Industry-specific Network

Services and Apps


Radio-related cluster

Platforms

NRG-5

Enabling Smart Energy as a Service via5G Mobile Network advances

Next Generation Platform as a Service (PaaS)

NGDaas aas

Most projects are cooperating with vertical use cases

services over sliced programmable infrastructures

MATILDA

SLICENET

MATILDA

A holistic, innovative framework for the design, development

and orchestration of 5G-ready applications and network

End-to-End Cognitive Network Slicing and Slice Management Framework in Virtualised Multi-Domain, Multi-Tenant 5G Networks

IoRL

Internet of Radio-Light in Buildings

METRO-HAUL

METRO High bandwidth, 5G Application aware optical network, with edge storage, compUte and low Latency

Broadcast and Multicast

Communication Enablers for the

Fifth Generation of Wireless Systems

5G integrated Fiber-Wireless networks exploiting existing photonic technologies for high-density SDNprogrammable network architectures

5 RANSFORMER 5G Transformer

5G Mobile Transport Platform for Verticals

5G-PICTURE 5G PICTURE

5G Programmable Infrastructure Converging disaggregated network and compUte Resources

SPACE Bluespace

Building on the Use of Spatial Multiplexing 5G Networks Infrastructures and Showcasing Advanced technologies and Networking Capabilities

5G CAR

Fifth Generation Communication Automotive Research and Innovation for e2e V2X connectivity and multi-RAT interworking

CLEAR5G

Converged wireless access for reliable 5G MTC for factories of the future (Machine type communications)

5G MoNArch

5G Mobile Network Architecture for diverse services, use cases, and applications in 5G and beyond

ONESG

E2E-aware Optimizations and advancements for the Network Edge of 5G New Radio

SaT 5G

Satellite and Terrestrial network for 5G for integration of satellite and terrestrial systems

5G ESSENCE **5G ESSENCE**

Embedded Network Services for 5G Experiences

*** 5GCOPOL 5G-CORAL

A 5G Convergent Virtualized Radio Access Network Living at the Edge

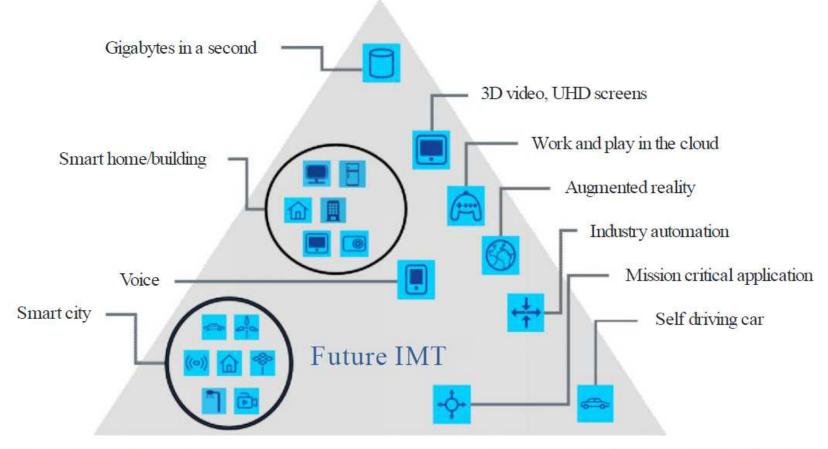
5G Initiative governance

Glebal5G Global5G.org

Global vision, standardisation and stakeholder engagement in 5G

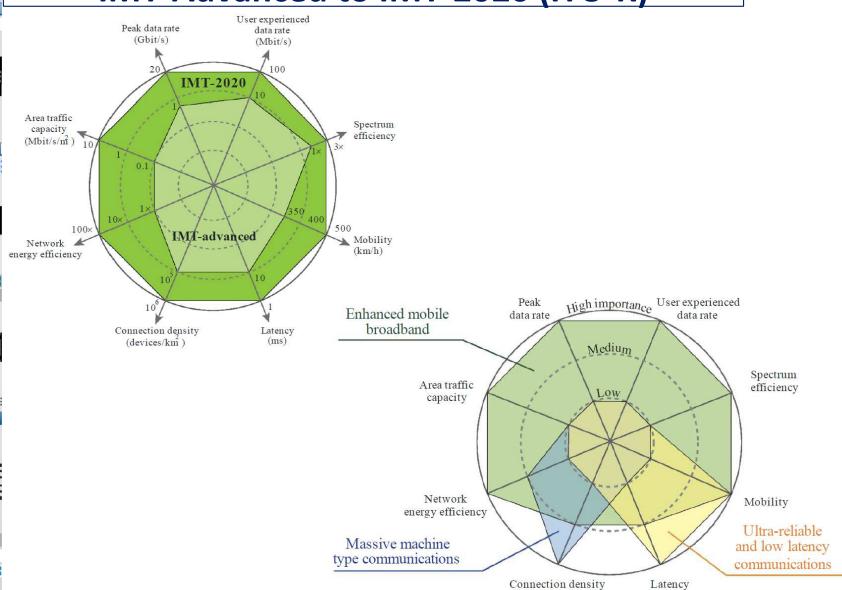
05/10/2017

Source: 5G PPP, https://5g-ppp.eu/5g-ppp-phase-2-projects/.



Usage scenarios for IMT-2020 and beyond (ITU-R)

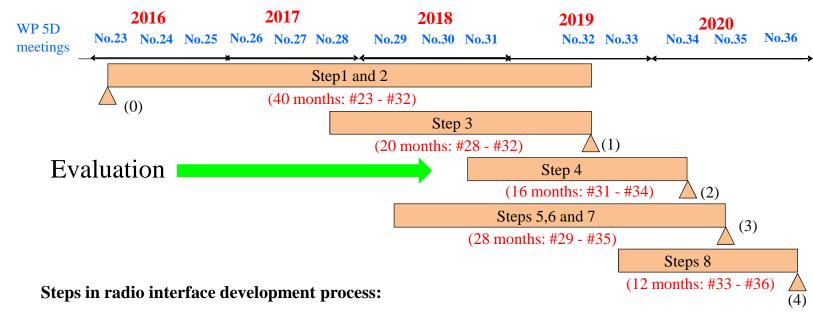
Enhanced mobile broadband


Massive machine type communications

Ultra-reliable and low latency communications

towards global next generation communication network European path

Enhancement of key capabilities from IMT-Advanced to IMT-2020 (ITU-R)


M.2083-04

05/\$0/rce! TTU-R: IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU-R M.2083-0 (09/2015), https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf.

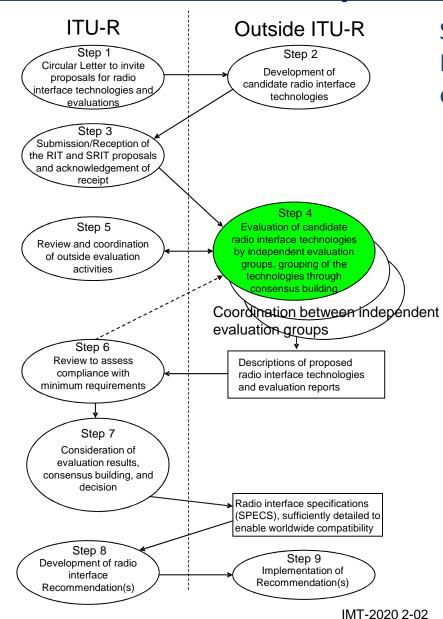
05/10/2017

- Step 1: Issuance of the circular letter
- Step 2: Development of candidate RITs and SRITs
- Step 3: Submission/Reception of the RIT and SRIT proposals and acknowledgement of receipt
- Step 4: Evaluation of candidate RITs and SRITs by Independent Evaluation Groups
- Step 5: Review and coordination of outside evaluation activities
- Step 6: Review to assess compliance with minimum requirements
- Step 7: Consideration of evaluation results, consensus building and decision
- Step 8: Development of radio interface Recommendation(s)

Critical milestones in radio interface development process:

- (0): Issue an invitation to propose RITs March 2016
- (1): ITU proposed cut off for submission July 2019 of candidate RIT and SRIT proposals
- (2): Cut off for evaluation report to ITU February 2020
- (3): WP 5D decides framework and key June 2020 characteristics of IMT-2020 RIT and SRIT
- (4): WP 5D completes development of radio October 2020 interface specification Recommendations

IMT-2020 2-01


RIT - Radio Interface Technology

SRIT - Set of Radio Interface Technologies

towards global next generation communication network path European

IMT-2020 terrestrial component radio interface development process

Step 4 – Evaluation of candidate RITs or SRITs by independent evaluation groups

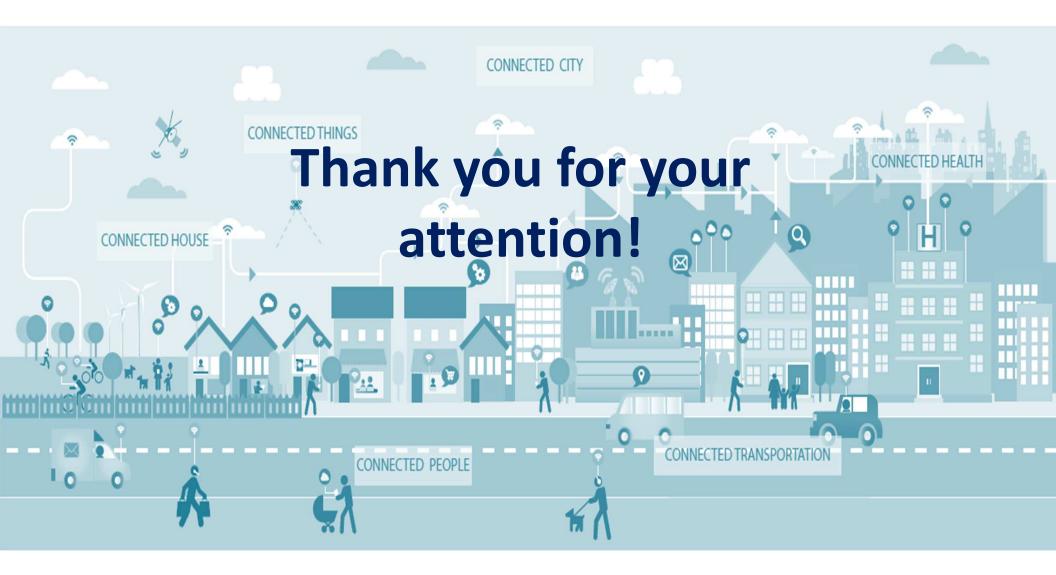
- 5G Infrastructure Association registered as Evaluation Group at ITU-R
- Evaluation guidelines to follow in ITU-R M.[IMT-2020.Submission]
- Additional evaluation methods by Evaluation Groups may be used and shared between Evaluation Groups
- Coordination between
 Evaluation Groups for
 comparison and consistency of
 results
- Evaluation reports to be sent to ITU-R Study Group 5 as input for WP5D and publication

communication

•	Characteristic for evaluation	High-level assessment method	Evaluation methodology in this report	Related section of Reports ITU-R M.[IMT-2020.TECH PERF REQ] and ITU-R M.[IMT-2020.SUBMISSION]
	Peak data rate	Analytical	§ 7.2.2	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.1
	Peak spectral efficiency	Analytical	§ 7.2.1	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.2
	User experienced data rate	Analytical for single band and single layer; Simulation for multi- layer	§ 7.2.3	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.3
1	5 th percentile user spectral efficiency	Simulation	§ 7.1.2	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.4
	Average spectral efficiency	Simulation	§ 7.1.1	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.5
	Area traffic capacity	Analytical	§ 7.2.4	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.6
	User plane latency	Analytical	§ 7.2.6	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.7.1
1	Control plane latency	Analytical	§ 7.2.5	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.7.2
	Connection density	Simulation	§ 7.1.3	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.8
	Energy efficiency	Inspection	§ 7.3.2	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.9
	Reliability	Simulation	§ 7.1.5	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.10
E	Mobility	Simulation	§ 7.1.4	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.11
E	Mobility interruption time	Analytical	§ 7.2.7	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.12
	Bandwidth	Inspection	§ 7.3.1	Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.13
	Support of wide range of services	Inspection	§ 7.3.3	Report ITU-R M.[IMT- 2020.SUBMISSION], § 3.1
III	Supported spectrum band(s)/range(s)	Inspection	§ 7.3.4	Report ITU-R M.[IMT- 2020.SUBMISSION], § 3.2
440				

- ITU-R report provides detailed guidelines on evaluation methodology and procedures
 - System simulation procedures
 - Analytical approach
 - Inspection approach
 - Usage scenarios
 - Test environments
 - Network layout
 - Evaluation
 configurations including
 detailed parameter
 settings
 - Antenna characteristics
 - Channel models for IMT-2020 for system and link level simulations

Conclusions



- In Europe 5G PPP is major 5G research program in Horizon 2020
- 5G Infrastructure Association is representing private side in 5G PPP and EU Commission is representing the public side
- Cooperation with international counterparts
- 5G Infrastructure Association registered as ITU-R Evaluation Group
- Ongoing research projects on most 5G building blocks and cooperation with vertical sectors
- 5G Infrastructure Association in discussion with 5G PPP projects for technical contributions to IMT-2020 evaluation
- Ambition: Complete evaluation report with main focus on expected
 3GPP submission
- Horizon 2020 is open for international participation

Acknowledgement: The author would like to thank his colleagues for their contributions.

http://5g-ppp.eu

