Setting the scene: enabling small satellites to utilize their full potential *(or: does satellite size matter?)*

Wouter Jan Ubbels

ITU Symposium and Workshop on small satellite regulation and communication systems, Prague, Czech Republic, 2-4 March 2015
ISIS – Innovative Solutions in Space

- Founded in 2006, spin-off from Delfi-C3 project
- Currently about 50 staff (FTE)
- Offices in Delft, The Netherlands and Somerset West, South Africa
Main Activities

Missions
- Turn key solutions
 - CubeSat platforms
 - Payloads
 - Ground segment
 - Launch
 - Operations
- Fast implementation times
- Including training, knowledge transfer and co-development

Products
- CubeSat Avionics
 - Radios
 - Antennas
 - Solar Arrays
 - OBCs
 - Etc.
- Ground Stations
- Operations Centers
- Support equipment
- Software Tools
- Both standardized and custom developments

Launches
- Launch Services
 - DNEPR
 - Soyuz
 - Long March
 - VEGA
 - ANTARES
 - Falcon-9
 - PSLV
- Piggy back
 - CubeSats
 - Nanosats
 - Microsats
- Associated Services
 - Testing
 - Insurance

Applications
- Based on satellite networks
 - Radio Astronomy
 - Maritime Monitoring
 - Agriculture
 - Communications
 - Earth Observation
- Global Coverage
- High revisit times
- Fully integrated solutions

| Deliver turn-key Space solutions To 3rd parties | Build and deliver spacecraft components | Launch 3rd party Satellites on 3rd party rockets |
WHAT IS ‘A SMALL SATELLITE’?

DOES SATELLITE SIZE MATTER?
Size Matters...
Mass classification

<table>
<thead>
<tr>
<th>Satellite Type</th>
<th>Mass Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini satellite</td>
<td>100-500kg</td>
</tr>
<tr>
<td>Micro satellite</td>
<td>10-100kg</td>
</tr>
<tr>
<td>Nano satellite</td>
<td>1-10kg</td>
</tr>
<tr>
<td>Pico satellite</td>
<td>0.1-1kg</td>
</tr>
<tr>
<td>Femto satellite</td>
<td><100g</td>
</tr>
</tbody>
</table>

CubeSats

- GeneSat
 - NASA
- Delfi-C3
 - TU Delft
- SNAP-1
 - SSTL
- CSTB-1
 - Boeing
SO... WHAT ARE THE OTHER DIFFERENCES BETWEEN NANO & PICOSATELLITES AND “TRADITIONAL” SATELLITES

• The technology used
• Short timelines
• Who develops them
• How they are launched
Technology used – spin in
Short development timelines – QB50p

- KoM (T0)
- PDR (T0 + 1 month)
- CDR (T0 + 2.5 months)
- TRR (T0 + 5 months)
- FRR (T0 + 6 months)
- Launch (T0 + 7 months)
Who develops them

Early Adopters
• University Groups
• SME’s (ISIS, GomSpace, and many more)
• STEM Foundations (AMSAT)

Followers
• Space Agencies and research institutes
• Venture capital backed entrepreneurs
• Large Systems Integrators
• Military
The way they are launched

Standard Launch Vehicle interface

“Piggy back” on various launch vehicles...

... or from the ISS
Size matters?

DN Report ITU-R SA.2312:
- Low RF power \rightarrow but still high PSD due to small bandwidth
- Omnidirectional antennas – may make coordination more difficult
- Applicable Radiocommunication services, class of station: NO DIFFERENCE
- Protection criteria and status as defined in ITU-R Recommendations apply as for any other satellite
- No clear correlation between satellite size and RF parameters such as EIRP or frequency use
- Technical differences will diminish further as technology advances

Not from the perspective of the Radio Regulations!
Size matters!

However, their small size has been one of the key factors in their proliferation and growth in numbers.

Nano/Microsatellite Launch History and Projection (1 - 50 kg)

Projections based on announced and future plans of developers and programs indicate between 2,000 and 2,750 nano/microsatellites will require a launch from 2014 through 2020.

Source: Spaceworks inc.
Size matters – the “sweet spot”

- 1U to 3U cubesats are now widely used for technology demonstrations and education
- For more operational missions 6U to 12U nanosats are more suitable
 - Payloads less constraint
 - Maintain benefits of cubesats (modularity, launch cost)
- Similar trend as observed in mobile phones
 - Started out large, then became very small, and now are larger again (but partly replacing the pc)
Size matters - the real potential is in constellations

• First nanosatellite based constellations are emerging:
 – Spire
 – Planet Labs
 – Satellogic
 – Others...

• The applications (and thereby the applicable frequency bands / services) vary
 – Earth Observation
 – Telecommunication
 – Tracking / tracing
Constellation enablers

1. Access to space – not so much of an issue anymore

2. Sustainable use of the space environment
 – Responsible use of the orbit and spectrum resource
 – Mitigation of space debris
 – Positive satellite control at all times

3. Telemetry, tracking & commanding (TT&C)
 – Growing number of small satellites requires a different TT&C paradigm
TT&C Solutions used so far

- Amateur satellite service
 - May work for some missions, no pecuniary interest
 - Commonly used bands:
 - 145.8-146MHz
 - 435-438MHz – non interference basis (5.282)
 - 2400-2450MHz – non interference basis (5.282)

- Experimental licenses
 - Terrestrial, non interference, no protection basis

- Iridium, Orbcomm modems
 - Frequency bands used are not intended for use by a subscriber unit in space

- ISM
 - Frequency bands used are not intended for space use
 - Non interference, no protection basis

- SOS / SRS allocations in VHF/UHF/S-band
 - 400.15-401 & 401-402MHz: space-to-Earth
 - 148-149.9MHz Earth-to-Space – subject to coordination under RR Art. 9 Sect. II & shared terrestrially
 - 2200-2290 space-to-Earth /2025-2110MHz Earth-to-space “S-band” – very crowded
2200-2290MHz / 2025-2110MHz SOS, SRS, EESS “S-band” allocation

- Excellent characteristics, modest antenna requirements for satellites with limited AOCS / or during early operations, therefore well suited to be used for small satellite TT&C
- Not subject to coordination under RR Article 9 section II
- But... heavily crowded by SOS, SRS and EESS applications, so difficult to coordinate between systems, especially for new entrants
- Shared with fixed, land mobile applications → often also national (terrestrial) coordination is required
- PFD limit (RR Table 21-4) applies
Shared or dedicated TT&C spectrum & access mechanism – WRC-19?

- Shared or dedicated TT&C (SOS) spectrum could be a solution
- Some use by SRS could also be foreseen
- Need for a common access mechanism which facilitates sharing between multiple users and eases coordination process
- Need for development of common (standardized) RF characteristics to allow sharing and ease coordination with incumbent users
- Access not bound to satellites adhering to a certain “class”, but rather on the basis of compliance with agreed and standardized RF characteristics which are relevant from a frequency management perspective
- Could allow smallsat GEO to LEO Data Relay opportunities
- Example access mechanism: CDMA
 - Can be used to keep pfd low, even with low data rates typically used for nanosatellites
 - CDMA has been proven in the space environment (this idea is not new)
 - Provides for relatively simple integration of ranging functionality to allow orbit determination
 - May aid in performing simultaneous TT&C for multiple satellites in view over one groundstation
- Technically, this is feasible!
 - SDR allows rapid and flexible implementation both on board the satellite as well as the Earth station side of the link
Thank you for your attention!

Wouter Jan Ubbels | w.j.ubbels@isispace.nl | +31 15 256 9018

ISIS Contact information:
Motorenweg 23,
2623 CR Delft,
The Netherlands

Tel: +31 15 256 9018

Email: info@isispace.nl

Web: www.isispace.nl