Preliminary noise measurements campaign carried out by HUMSAT-D during 2014

Prof. Dr. Fernando Aguado Agelet (faguado@tsc.uvigo.es) Diego Nodar López Alberto González Muiño University of Vigo

ITU-R Conference and Workshop on the Small Satellite Regulation and Communication Systems, Prague, 2-4 March 2015

The Humsat System

Humsat-D

Humsat Payload (HUMPL)

HUMPL Operation (I)

Main objectives:

- 1. Test payload performance.
- 2. Study the communication channel behaviour.

Two phases planned:

- 1. In orbit test.
- 2. Complete operation.

HUMPL Operation (II) In orbit test

December 3, 2013: First operation.

Tests planned for in orbit test phase:

- Noise measurements at different points.
- Carrier power measurements where terminals are installed.
- Performance tests with different configurations.

Interference detection

During the in orbit test phase an unexpected interference was measured.

Several tests were performed to identify the source and nature of the interference.

Interference Measurements Tests campaigns

Different tests campaigns were performed:

- Different latitudes and frequencies.
- Different locations and frequencies.
- Interference attenuation.
- Interference continuity.

Interference Measurements Methodology

- 1. The HUMPL is configured to measure power level.
- 2. The 4 transceivers are operated in parallel.
- The test is performed during a specific time and frequency.
- 4. The HUMPL returns two result values per transceiver:
 - a. Maximum power received during the test.
 - b. Frequency stability of the signal received.

Interference Measurement Different latitudes and frequencies (I)

UHF Amateur band: 437,350 MHz to 437,700 MHz

Interference Measurement Different latitudes and frequencies (II)

Power received (dBm)

437.6

437.6

Interference Measurement Different latitudes and frequencies (III)

500

437 44

437.46

437 48

437.5

437 52

437 54

437.56

437.58

437 F

Frequency stability

Interference Measurement Different locations and frequencies (I)

HUMPL Band: 437,525 MHz

ISM Band: 434,525 MHz

Interference Measurement Different locations and frequencies (II)

Interference Measurement Different locations and frequencies (III)

Frequency stability

Interference Measurement North Atlantic transition (I)

Objective: detect interference attenuation.

Result: the interference disappears abruptly.

Interference Measurement North Atlantic transition (II)

Power received (dBm)

Frequency stability

Interference Measurement Pulsed or continuous?

Power received (dBm)

Frequency stability

Conclusions (I)

- A powerful interference was detected in 430
 440 MHz band.
- It is detected in North hemisphere areas.
- It is generated by a pulsed source.
- New measurement campaigns must be planned with different satellites in order to discard internal contributions.

Conclusions (II)

Other studies provide similar results:

Busch, S., Bangert, P., Dombrovski, S., Schilling, K., UWE-3, In-Orbit Performance and Lessons Learned of a Modular and Flexible Satellite Bus for Future Picosatellite Formations

Thank you for your attention

This project has been financed by the spanish Ministry of Science and Innovation.

Ref : ESP2013-47935-C4-1-R

Prof. Fernando Aguado Agelet University of Vigo faguado@tsc.uvigo.es

